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1. Introduction 

Under the conventional method of paying for electricity bills (the post-pay scheme), a household 

pays for its electricity consumption once a month after they consume the electricity. This is quite 

different from the payment procedure for other consumption goods, such as groceries or 

gasoline, in which payment occurs prior to the consumption of the goods.  One might wonder 

how would people’s consumption for groceries or gasoline change if they pay for them once a 

month post consumption and/or only find out how much they have consumed when they pay for 

the monthly bills? 

 Similar to paying for consumption goods such as groceries, pre-paid electricity meters 

require customers to pay before consuming the electricity. In most cases, an in-home display 

usually accompanies the pre-paid system which provides feedback on how much energy or credit 

has been used.  Currently there are only several utilities in Michigan, Arizona, Texas, Oklohama 

and Georgia that have pre-paid programs. Examples include Salt River Project (SRP) (pre-paid 

program beginning in 1993), Oklahoma Electric Cooperative (program starting in 2006), Public 

Utility Commission of Texas (program starting in 2011), and Detroit Edison pilot (program 

starting in 2010). 

In 1993, SRP, a major utility company in Phoenix metropolitan area, started a pre-paid 

electricity program, commonly known as M-Power program. The M-Power program started out 

targeting only customers with arrears facing terminations in their services but was eventually 

made available to all customers for voluntary subscription. Through over two decades of 

technology and operation improvement, the M-Power program has grown to a mature program, 

with 16.4% of SRP’s residential customers participating, making it the largest pre-paid program 

in the United States.  
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Assessing the impact of pre-paid electricity programs on electricity consumption is 

important in three aspects. First, the recent EPA’s proposed rule on reducing carbon emissions 

from existing power plants identifies energy efficiency programs, including energy conservation 

programs, as one compliance mechanism (EPA, 2014). A pre-paid electricity program can be a 

candidate compliance program if there is adequate empirical evidence showing its energy 

conservation effects. Second, utility companies and other types of energy service companies 

have implemented various types of energy conservation, energy efficiency and demand side 

management programs and there have been rich number of studies examining these other types 

of programs. For example, studies find that home energy reports with information on 

households’ own and peers’ home electricity usage are effective at reducing households’ energy 

consumption (Allcott, 2011b; Costa and Kahn, 2013). Utility rebates and financial incentives for 

energy conservation are also shown to have statistically significant impact on energy 

consumption (Ito, 2015).  There are also studies evaluating utility dynamic electricity pricing 

programs such as real-time pricing and time-of-use pricing (Aigner et al., 1994; Wolak, 2011; 

Jessoe and Rapson, 2014; Jessoe et al., 2014; Qiu and Kirkeide, 2014).  However, literature 

examining the impact of pre-paid electricity pricing programs on electricity consumption 

behavior has been rare. Third, the number of studies evaluating the impact of information 

provision programs through smart grid and in-home displays (IHDs) on consumers’ electricity 

consumption has increased in recent years (Matsukawa, 2004; Hargreaves et al., 2010; Faruqui et 

al., 2010). Pre-paid electricity programs are closely related to such information provision 

programs because rich information such as electricity prices, real time consumption and expected 

consumption is usually provided to pre-paid electricity customers, hence it is essential to 
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understand whether observed reduction in consumption (if any) is driven by timely information 

or from the payment procedure.   

Though there is lack of empirical studies that quantitatively estimate the casual impact of 

pre-paid energy programs on consumer energy consumption, recently there has been an increase 

in the amount of qualitative studies focusing on customer and utility company satisfaction with 

pre-paid systems, with most of these studies focusing on overseas programs such as those in 

Europe, Africa and India. Anderson et al (2012) conduct a survey among 699 low-income 

households in Britain and find that one of the main benefits of pre-paid electricity program is that 

it gives customers better control of fuel costs and pre-paid customers are 2.6 times more likely to 

use energy rationally relative to others. Miyogo et al. (2013) survey pre-paid customers in Kenya 

and find that pre-paid customers are more careful about their energy consumption.  O'Sullivan et 

al. (2014) conduct qualitative survey among several pre-paid meter customers in New Zealand 

and find that the pre-paid systems can help households better budget and manage their energy 

use though increased information feedback. On the other hand, consumers incur inconvenience 

to purchase the electricity every time when they need to charge their pre-paid card (in some of 

the systems consumers need to go to a Kiosk to charge their pre-paid card) as well as the worries 

and cost of being disconnected when the pre-paid card runs out (Tewari and Shah, 2003; 

O'Sullivan et al., 2014).  The benefits of pre-paid systems to the utilities includes reduction of 

energy lost through theft resulted from illegal connections, reduction of fraud or non-payment of 

bills, and reduced financial risks from arrearage (Tewari and Shah, 2003; Bandyopadhyay, 2008; 

Khan et al., 2010; Ogujor and Otasowie, 2010; Mwaura, 2012).  Casarin and Nicollier (2009) 

conduct a cost-benefit analysis of the adoption of pre-paid meters in a local community in 

Argentina and find that prepaid meters lead to an increase in welfare.  
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This paper first demonstrates using basic economic theory that there are four possible 

channels via which a pre-paid plan leads to electricity consumption reduction: nudging, price 

effects, information provision, and costs of being disconnected. Then, using customer level 

residential billing data from 2008-2010 obtained from SRP, this study adopts a matching 

approach and a difference-in-differences method to estimate empirically the impact of a pre-paid 

electricity plan on residential electricity consumption while correcting for selection bias. We find 

that the pre-paid program is associated with 12% reduction in electricity consumption. We also 

explore the heterogeneity in the response to pre-paid electricity pricing by wealth level. Using 

arrear amount as a proxy for wealth level, we find that customers with lower level of wealth tend 

to experience greater electricity reduction after the switch. In addition, results show that pre-paid 

customers save more electricity in the summer than winter, which has important implication for 

managing peak demand and load shape for utility companies since summer is when system peak 

demand usually happens.  

The remainder of this paper is organized as following. Section 2 provides background to 

SRP’s pre-paid electricity program. Section 3 presents the theoretical framework. Section 4 

describes the empirical strategy and study design. Section 5 discusses the data. Section 6 

contains econometric models and estimation results. Section 7 conducts robustness checks. 

Section 8 derives welfare and policy implications and Section 9 concludes. 

2. SRP’s pre-paid electricity program – M-Power program 

SRP’s pre-paid electricity program is commonly known as the M-Power program. When a 

customer initiates the M-power service, specific smart grid meter and User Display Terminals 

(UDT) will be installed at the customer’s home.  The customer will also be given the Smart 
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Cards which are unique to the customer’s account.  To add money to the Smart Card, customers 

need to go to a SRP PayCenter. By 2014, there are more than 110 PayCenters for the pre-paid 

card across SRP service territory. If the SmartCard runs out of money, the customer’s electricity 

will be disconnected. Customers need to charge the Smart Card before it runs out of money in 

order to stay connected.  

The UDT provides valuable information about a customer’s energy consumption, 

including the current rate per hour displayed as dollars/hour based on the amount of electricity 

used in the previous hour, the rate charged displaying as a kWh rate, an estimate of today’s 

electricity cost, yesterday’s cost, estimated cost of the current month, cost of last month, an 

estimated number of days of service remaining with the current credit and the remaining credit 

(EPRI, 2010b).  The UDT also gives warning signals when the customer’s account balance is 

below $10.  

SPR has conducted customer survey among its M-Power users. About 84 percent of 

customers reported that they are either ‘‘very satisfied’’ or ‘‘satisfied’ with the program.  About 

95 percent of customers reported that they have had better control of their electricity use.  

3. Theoretical framework 

The energy savings from a pre-paid program come from two distinct features of the program: 

information feedback from in-home displays (IHDs) and the prepay mechanism. Faruqui et al. 

(2010) finds that IHDs alone reduce energy consumption by about 7% while when combined 

with pre-paid mechanism, the amount of energy reduction is twice as much. Pre-pay with IHD 

versus post-pay options can influence consumers’ electricity consumption behavior through four 

possible mechanisms: nudging, price effects, information provision, and costs of being 
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disconnected. The directional impacts of these four mechanisms on electricity usage can be 

explained via simple models based on consumer theory.  

If electricity is pre-paid, then it is similar to other consumption goods (e.g. food) that are 

pre-paid or pay-as-you-go.  The consumer utility maximization problem for pre-paid electricity 

is then the standard one in the textbook.  

Pre-paid scenario model set up: 

Assume there are only two goods: x and y, where x is electricity; y is a composite of all 

other goods (spot transactions are assumed for y). Consumer’s utility function is   𝑢(𝑥,𝑦) with 

𝑢(𝑥,𝑦)  being strictly increasing and concave in both goods. Price of x is p. Price of y is 

normalized to one. I is the disposable income. We also assume that the price of electricity is 

constant and known by consumers.  

max
𝑥,𝑦

𝑢(𝑥,𝑦)                𝑠. 𝑡.    𝑝𝑥 + 𝑦 = 𝐼      𝑎𝑎𝑎  𝑥 ≤ 𝐸 

 

Figure 1. Utility maximization problem for pre-paid customers  
(without considering cost of pre-paid program) 

 

The second constraint 𝑥 ≤ 𝐸 comes from the fact that electricity consumption is through 

household appliance stock. In the short run when the appliance stock is constant, households 

x 

y 

u 

I 
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cannot consume electricty more than the capacity of the appliance stock. Figure 1 visualizes the 

utility maximization problem for pre-paid electricity customers.  

 

3.1 Nudging on budgeting electricity consumption 

The average monthly electricity bill in United States in 2012 is $107.28 (EIA, 2012). According 

to the 2012 consumer expenditure survey, average annual household expenditure is $51,442 in 

2012(BLS, 2012), making electricity spending only 2.5% of total expenditure.  Given that 

electricity spending is only a small portion of the overall household expenditure and the fact that 

conventionally electricity is post-paid on a monthly basis, households are less trained at tracking 

and budgeting their electricity expenditure (Smith, 2010; O'Sullivan et al., 2014) and customers 

sometimes over consume energy and experience “bill shock” (Anderson et al., 2012). This is also 

related to the “inattention” on energy costs as discussed in Allcott (2011a) and Allcott and 

Greenstone (2012).  

Let’s assume an extreme case where the household completely forgets to budget its 

electricity expenditure, then the utility maximization problem becomes the following, assuming 

that households have some other means (e.g. through endowment) to cover for the electricity cost 

or incur arrearage when they receive that bill with a surprisingly high amount due.   

max
𝑥,𝑦

𝑢(𝑥,𝑦)                𝑠. 𝑡.    𝑦 = 𝐼    𝑎𝑎𝑎  𝑥 ≤ 𝐸 

The red lines in Figure 2 show the budget constraint and the utility maximization problem 

for such post-pay customers. The red utility curve intersects with the appliance stock constraint 

at x=E.  
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Figure 2. Utility maximization problem for post-pay customers  
(ignoring budgeting electricity expenditure) 

 
 

In this case consumers will consume more electricty (at the level of E) than the pre-paid 

case. Pre-paid scheme can nudge households to better budget electricity every month because 

consumers are more frequently reminded of the electricity expenditure and consumers need to 

pay before they can consume electricity.   

 

3.2 Price effects 

Now we assume that consumers do budget their electricity expenditure in a post-pay scheme. 

Because electricity payment occurs at the end of the period after consumption has already taken 

place, this expenditure will be discounted when households optimize their consumption 

problem.5  Even though one month is relatively short and the relevant interest rate might be low, 

existing literature has shown evidence that people are present bias where they discount outcomes 

in near future more than for outcomes in the far future, which is referred to as hyperbolic 

discounting (Frederick et al., 2002). Assuming that the discount factor is β with β<1.  

                                                           
5 Given that payment can be delayed to the end of the period in the post-pay scheme, any agent that discounts future 
cash flow would view deferred payment at today’s price as a discount to the price. 
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max
𝑥,𝑦

𝑢(𝑥,𝑦)                𝑠. 𝑡.    𝛽𝑝𝑥 + 𝑦 = 𝐼      𝑎𝑎𝑎  𝑥 ≤ 𝐸 

In a post-pay scheme, the price of electricty will be discounted and thus through both 

substitution and income effects, consumption of electricity will be increased. The tangent point 

of the red lines in Figure 3 indicates the solution to the utility maximization problem for post-pay 

customers who discount future cashflows. The new budget constraint is more steep and the new 

budget constraint is tangent to the the utility curve at a higher value of x.   

 

Figure 3. Utility maximization problem for post-pay customers  
(with discount factor) 

 
 

The fact that pre-paid program should reduce consumption relative to post-paid scheme 

can also be viewed as who gets to enjoy the time value of money for the amount due on the 

electricity. In the post-paid scheme, the consumers enjoy it while pay-as-you-go transfers that 

surplus to the electricity providers. So although pay-as-you-go can be environmental friendly and 

enhance energy savings, it also has a negative impact to the consumers welfare as it in effect 

reduces their budget constraint and hence their individual utility.  

 

3.3 Information provision 
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Again we assume that a household does budget its electricity consumption in a post-pay scheme. 

In a post-pay scheme, the household only finds out its consumption level after it has already 

consumed the electricity with a delay between consumption and bill arrival. In a pre-paid 

scheme, the household can monitor its electricity consumption in real time by reading the 

balance of its pre-paid meter. In addition, the inconvenience of being disconnected forces the 

household to pay more attention to electricity consumption as well as the remaining balance of 

its pre-paid meter (O'Sullivan et al., 2014). Thus in the pre-paid scheme, consumers can 

accurately budget their electricity consumption while in the post-pay scheme, consumers need to 

form an expectation (which can often deviate from realization) of their electricity consumption 

of the month.  

Assume that the consumer-estimated amount of electricity consumption in the post-pay 

scheme is 𝑥� and 𝑥� = 𝑥 + 𝜀, where 𝑥 is the true level of consumption while  𝜀 is the bias between 

the estimate and true consumption. Then consumer’s problem becomes 

max𝑥,𝑦 𝑢(𝑥,𝑦)                𝑠. 𝑡.    𝑝𝑥� + 𝑦 = 𝐼      𝑎𝑎𝑎  𝑥 ≤ 𝐸    

In this case the budget constraint is equivalent to 𝑝𝑥 + 𝑦 = 𝐼 − 𝑝𝜀  and thus the 

information uncertainty essentially translates into an income effect.  If 𝜀 < 0 meaning that the 

agent under-estimates his electricity consumption, it is equivalent to having an increase in the 

budget constraint. Thus consumers will consume more electricity than the pre-paid case. The red 

lines in Figure 4a show the budget constraint and the utility maximization problem for such post-

pay customers. The new budget constraint shift outwards and it is tangent to the utility curve at a 

higher value of x.  
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Figure 4a. Utility maximization problem for post-pay customers  
(under-estimate their electricity consumption) 

 

If 𝜀 > 0  meaning that the agent over-estimates his electricity consumption, it is 

equivalent to having a decrease in the budget constraint.  Thus consumers will consume less 

electricity than the pre-paid case. The tangent point of the red lines in Figure 4b shows the 

solution to the utility maximization problem for such post-pay customers. The new budget 

constraint shift inwards and it is tangent to the utility curve at a lower value of x. 

 

Figure 4b. Utility maximization problem for post-pay customers  
(over-estimate their electricity consumption) 

 

Thus through the information provision mechanisms, pre-paid programs can either 

increase or decrease electricity consumption compared to a post-pay scheme.   
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3.4 Costs of being disconnected 

In a pre-paid program, once the credit is used up, electricity would be disconnected and the agent 

would incur disutility from the disconnection. In addition, in most existing pre-paid systems, 

customers need to go to designated locations to charge their pre-paid card and thus incur further 

cost (time and travel). To capture these effects from disconnection, we add a cost component C 

into the budget constraint.   

max
𝑥,𝑦

𝑢(𝑥,𝑦)                𝑠. 𝑡.    𝑝𝑥 + 𝑦 + 𝐶 = 𝐼      𝑎𝑎𝑎  𝑥 ≤ 𝐸 

This is equivalent to have a decreased budget constraint and thus consumption of 

electricity will be reduced. The tangent point of the green lines in Figure 5 shows the solution to 

the utility maximization problem for such pre-paid customers while incorporating this extra cost. 

Figure 5 shows that in this case, the budget constraint shifts inwards and is tangent to the utility 

curve at a lower value of x.  

 

Figure 5. Utility maximization problem for pre-paid customers  
(with extra cost of pre-paid program) 

 

4. Empirical strategy and study design 

4.1 Empirical strategy 
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The standard residential price plan is called E-23 plan for SRP customers.  In this study, we 

estimate the casual impact on electricity consumption of switching to M-power (the prepaid plan) 

from the standard residential price plan. However, M-Power is a voluntary plan and there will be 

selection-bias issues. Un-observable factors such as household budgeting skills, ability to reduce 

energy consumption, and willingness to be more conscious about energy consumption can affect 

both the participation of pre-paid program and electricity consumption. For example, participants 

of the pre-paid program could be those that have poorer household budgeting skills in the first 

place and even if they switched to the pre-paid program, they still can’t manage their energy 

expenditure better, which will lead to an under-estimate of the treatment effects.  It is also 

possible that households that are willing to switch to the  pre-paid program might be those that 

have better ability to reduce their energy consumption because they have fewer people in the 

household, which will lead to an over-estimate of the treatment effects. It is also possible that 

consumers who are more conscious about their energy consumption want to switch to the pre-

paid program, which again will lead to an over-estimate of the treatment effects.  

In order to eliminate the selection bias and to estimate the causal impact, we apply a 

combination of matching and difference-in-differences (DID) approaches. Fowlie et al. (2012) 

use a similar matching and DID approach to analyze emission trading programs. Matching 

methods select a control group that is as similar to the treatment group as possible prior to the 

treatment (Fowlie et al., 2012), which is referred to as a Nonequivalent Control Group Design 

(Campbell & Stanley, 1963). The Electric Power Research Institute (EPRI) Research Protocol 

(EPRI, 2010a) states that “the objective of this approach is to create a non-equivalent control 

group that is as similar as possible to the treatment group formed by volunteer participants.”  
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In the case of voluntary program participation, researchers can implement a matching 

method if the following three assumptions hold: 1) each observation has independent and 

identical distribution (i.i.d. sample); 2) if conditional on the observed control variables, the 

participation and the outcome variables are independent or that only observable factors influence 

participation and the outcome variables simultaneously, the so-called selection on observables 

(Conditional Independence or CIA); 3) given a level of the observed control variables, the 

probability of a subject participating in the program is between zero and one (Common Support 

or CS). In a case where selection is based on unobservable attributes, (meaning that assumption 2 

is violated), researchers can implement a combination of matching and difference-in-differences 

(DID) estimator such as panel regressions (which includes flexible fixed effects to eliminate the 

unobservable factors). 

In this study, Assumptions 1 and 3 can be justified to hold: conditional on the 

observables, each residential customer is likely to be independent of each other and has a similar 

distribution of energy consumption (Assumption 1); given a level of the key observable 

attributes – location, arrearage amount and energy consumption stratum – there are both 

customers that volunteered to participate in the pre-paid program and customers that did not 

(Assumption 3). Assumption 2 is harder to justify and also generally not testable, so we apply a 

DID approach.   

Exact matching is not always feasible. Inexact matching requires a measure of “distance” 

between any two observations, i and j.   This proposal adopts Euclidian-type distance matching 

(Rosenbaum and Rubin 1983). Euclidian-type distance matching is to find a control household 

that has the shortest distance with the treatment household where the distance is dij=(xi-xj)’ W (xi-

xj)  and x is a vector of observed attributes prior to the start of treatment and W is a weight 
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matrix. Different matching algorithms including single nearest neighbor, k-nearest neighbor and 

kernel matching were tried to find the optimal control group.  

We also checked the balancing statistics of the matching results. In order to have valid 

estimates on the treatment effects using the matching approach, it is important to ensure that the 

treatment group and control group are indeed comparable on pre-treatment attributes. This is 

called balancing of groups. Two important balancing statistics are used to test the sample 

equivalence: standardized mean difference (SMD) to check for sample means and variance ratios 

(VRs) to check for distribution and higher-order sample moments (Linden and Samuels, 2013).  

SMD for a given attribute Xj is defined as  

𝑠𝑠𝑎𝑗 =
�𝑋�𝑗𝑗−𝑋�𝑗𝑗�

�(𝑆𝑗𝑗)2+(𝑆𝑗𝑗)2

2

      , 

where the numerator is the absolute difference in average Xj  between the treatment and control 

groups (subscripts T and C, respectively); the denominator is the average standard deviation of 

the two groups. Although there is no empirical evidence in the literature on using which cut-off 

point to define balance, Normand et al. (2001) suggest that if SMD is greater than 0.1 and 

Rubin(2001) suggest that if SMD is greater than 0.25, then it implies that treatment and control 

groups are not balanced in means.  

VR for a given attribute Xj is defined as 

𝑉𝑉𝑗 = (𝑆𝑗𝑗)2

(𝑆𝑗𝑗)2
     , 
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where 𝑆𝑗𝑗 is the standard deviation of Xj in the treatment group and 𝑆𝑗𝑗 is the standard deviation 

of Xj in the control group. Rubin suggests that if VR is greater than 2 or less than 0.5, it implies 

imbalance of the distribution of the two groups.  

4.2 Study design 

The general study design is summarized in Table 1.  Summer and winter studies are separate. For 

the summer study, the treatment group customers are those who switched to the pre-paid 

program between November 2008 and April 2009. The pre-test period is May 2008 to Oct 2008 

and the post-test period is May 2009 to Oct 2009. For the winter study, the treatment group 

customers are those who switched to the pre-paid program between May 2009 and Oct 2009. The 

pre-test period is Nov 2008 to April 2009 and the post-test period is Nov 2009 to April 2010.  

<Insert Table 1 here> 

Customers’ meter reading dates can change after they switch to the pre-paid program, 

which could potentially affect the evaluation.  For example, before the switch, the meter reading 

date of a customer could be on the 1st of each month while after the switch, the reading date 

could be 15th. Energy consumption pattern can change within 15 days because of variation in 

weathers within 15 days. Thus we filtered the pre-paid customers to only include those whose 

post-test meter reading dates are within +/- 7 days of the pre-test dates.   

The pre-test period customer level attributes are used for matching. For a pre-paid 

customer, a control customer who is located in the same city, zip code and street and that has the 

most similar pre-test energy consumption level as the treatment customer is identified.  
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5. Data  

There are 363 pairs of control and treatment customers for the summer study and 1,278 pairs for 

the winter study. Table 2 shows the summary statistics of the energy usage for the pre-paid 

customers and their control customers as well as the balance check results for sample 

equivalence.  For the summer study, before the treatment customers switched to the pre-paid 

program, the treatment and control customers had similar daily energy usage levels of about 

57~58 kWh. After the switch, the energy usage level of control customers stayed the same at 

about 58 kWh while the treatment customers dropped their energy usage to 52 kWh. Similarly, 

for the winter study, the treatment and control customers had similar energy usage levels before 

the switch while after the switch the treatment customers dropped their energy usage while 

control customers’ stayed the same.  

<Insert Table 2 here> 

The balancing statistics SDM is 0.05 for the summer study and 0.01 for the winter study, 

with both below 0.1, which suggests that the control and treatment groups are equivalent in terms 

of sample means. The statistics VR is 1.26 for the summer study and 1.25 for the winter study, 

with both below 2 and greater than 0.25, which suggests that the sample distribution between 

control and treatment groups are also equivalent.  
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Figure 6. Distribution of the distance (in miles) between a pair of control and treatment customer 

  

Figure 6 shows the distribution of the distance (in miles) between a pair of control and 

treatment customer. Most control customers are located within 1 miles of distance to their 

treatment customers and this can ensure the elimination of complicating factors from being in 

different neighborhoods.  

6. Results 

We first conduct statistical two sample test to evaluate whether there are statistically significant 

differences between the control and treatment groups in their post- and pre- test electricity 

consumption. Table 3 lists the results. The left hand side column of Table 3 uses the traditional 

subtraction DID method, which means testing Tpost-Tpre=Cpost-Cpre.  Tpost is the outcome variable 

(e.g. energy consumption) of the treatment group after the treatment and Tpre is the outcome 

variable of the treatment group prior to the treatment. Similarly, Cpost is the outcome variable 

(e.g. energy consumption) of the control group after the treatment and Cpre is the outcome 

variable of the control group prior to the treatment. Traditional subtraction DID estimator of the 
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treatment effect is  �̂�𝐷𝐷𝐷 = (Tpost − Tpre) − (Cpost − Cpre) . The right hand side column uses 

the percentage DID method, which means testing Tpost/Tpre=Cpost/Cpre. We also conduct the 

percentage method because this ensures that every customer in the small samples has equal 

impact in the energy analyses. 

<Insert Table 3 here> 

We conduct both t-test and the non-parametric test (Wilcoxon sighed-ranks test). The p-

value shows that both tests are statistically significant at 1% level, which suggests that the 

control and treatment customers had statistically significant differences in their energy usage 

after the treatment customers switched to the pre-paid program. From the traditional subtraction 

DID method, in the summer, pre-paid customers reduced their average daily energy consumption 

by -6.64-0.24=6.88 kWh; in the winter, pre-paid customers reduced their average daily energy 

consumption by -4.64-0.31=4.95 kWh. From the percentage method, pre-paid customers saved 

their energy consumption by 0.9-1=10% in the summer and by 0.86-1=14% in the winter. 

We then conduct panel regression methods to control for more characteristics. The 

complete panel regression model is as follows:  

kWhit=α+ β*M-Powerit+λ*Arrear i +δ *Arrear i * M-Powerit  + ∑ 𝜃𝐾1 k*Usage_stratum ki 

+∑ 𝜂𝐾1 k *Usage_stratum  ki * M-Powerit  + αi +εt+τit                                              (1),  

where i indicates individual customer; t indicates time period; kWh is the average daily energy 

consumption;  M-Power is a dummy variable that is equal to one if customer i is on M-Power 

program (pre-paid program) at time t; Arrear  is the amount of money a customer owed to the 

utility company prior to the start of the treatment period, which can serve as a proxy for customer 
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wealth level with higher amount of arrear indicating lower level of wealth; Usage_stratum  is a 

series of dummy variables indicating the pre-test energy consumption categories (S1: summer 

monthly kWh<400; S2: 400≤summer monthly kWh<850;  S3: 850≤summer monthly kWh<1300; S4: 

1300≤summer monthly kWh<1800; S5: 1800≤summer monthly kWh<2600; S6: summer monthly kWh ≥ 

2600); αi is individual fixed effects and εt is time fixed effects. 

We estimate different model specifications of equation (1). Tables 4 & 5 are the panel 

regression results for summer study. Table 4 uses random effects model 6 and Table 5 uses fixed 

effects model. The coefficient for the M-Power dummy variable measures the impact of the M-

Power program on daily energy usage, and it is negative and statistically significant for all 

models, indicating that M-Power program leads to statistically significant energy reductions. 

Models 1-8 have different control covariates. Models 1-3 show that on average, M-Power 

program in the summer reduces average daily energy usage by 6.8~7.3 kWh. At the mean pre-

treatment energy usage level of 58.656 for the treatment customers, this energy reduction 

amounts to about 12% energy savings.  In Models 4 &5, the coefficient of the interaction term 

Arrear*M-Power is negative and statistically significant, which indicates that customers with 

higher arrear amount or lower wealth level tend to save more energy. The coefficient of -0.00630 

in Model 4 implies if a customer’s arrear of the month prior to switching to M-Power is $100 

higher, the customer will reduce his/her energy consumption by about 0.6 kWh more. This 

further decrease in energy consumption by customers with higher arrear could result from the 

fact that higher-arrear customers have lower income or tighter budget for energy consumption. 

Model 5 adds the interaction terms between energy usage stratum dummies and M-Power. The 

base case is highest usage stratum. The coefficient for M-Power in Model 5 is the energy 

                                                           
6 We conduct random effects models in addition to fixed effects models because there are several time-invariant 
variables whose coefficients are of interest to the econometrician and policy makers.  
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reduction by the customers in the highest usage stratum in the base case, a daily reduction of 

12.8 kWh. The coefficients for the interaction terms between energy usage stratum dummies and 

M-Power are positive and statistically significant, indicating that compared to higher usage 

customers, lower usage customers save less on their energy consumption  in terms of kWh.    

<Insert Tables 4&5 here> 

Similar results are found in Table 5 which lists the fixed effects model results for the 

summer study.  From Model 6, M-Power program in the summer reduces average daily energy 

usage by 6.89 kWh or 6.8/58.656=12%. Model 7 shows that if a customer’s arrear of the month 

prior to switching to M-Power is $100 higher, the customer will reduce his/her energy 

consumption by about 0.7 kWh more. Model 8 also shows that higher usage customers save 

more kWh on their energy consumption.  

Tables 6 & 7 list the results for winter study. Models in Table 6 use random effects and 

models in Table 7 use fixed effects. Models 9, 10, 11 in Table 6 and Model 14 in Table 7 show 

that on average, M-Power reduces customers’ winter daily average energy consumption by 

4.9~5.1 kWh. At the mean pre-treatment energy usage level of 32.260 for the treatment 

customers, this energy reduction amounts to about 15% energy savings. Models 12 & 15 show 

that higher-arrear or lower-wealth customers reduce their winter daily energy consumption more, 

consistent with the summer results. From Model 12, the coefficient for Arrear*M-Power is 

0.00752, indicating that if a customer’s arrear of the month prior to switching to M-Power is  

$100 higher, the customer will reduce his/her energy consumption by about 0.75 kWh more. 

Model 16 shows that higher usage customers save more kWh on their energy consumption in the 

winter, but different from the summer results, winter results show that such change in energy 
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reduction is not monotonic. Stratum 3 customers saved the least compared to other stratum 

customers.   

<Insert Tables 6&7 here> 

Tables 8 & 9 combine the summer and winter study in the estimation. The interaction 

term Winter*M-Power can test whether consumers save more energy in the winter than they do 

in the summer. The coefficients for Winter*M-Power are all statistically significant and positive, 

indicating that consumers save more electricity in the summer.  

<Insert Tables 8&9 here> 

 

7. Robustness checks 

Although the combination of matching and DID methods can eliminate the selection bias 

originated from time-invariant and entity-invariant unobservables, it is likely that there are time-

variant individual or neighborhood factors that can alter consumers’ participation in pre-paid 

program and also their electricity consumption, causing biased estimation of the treatment 

effects.  To deal with these time-variant factors, we conduct the following robustness checks.  

Wealth stratum-time fixed effects:  It is likely that households within the same wealth 

level groups face similar shocks such as employment status shock and income shock. We use 

arrear amount as the proxy for wealth level and create five wealth level stratum (Stratum 1: 

arrear<0 meaning that utilities actually owe the consumers money; Stratum 2: 0≤ arrear<200; Stratum 3: 

200≤ arrear<500; Stratum 4: 500≤ arrear<1000; Stratum 5: arrear ≥ 1000). Then we include the wealth 

stratum-time fixed effects (εwt) in the panel regression model as shown in equation (2). For 
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robustness checks we are mainly interested in the average treatment effects of all categories of 

customers and thus we do not include variables involving Arrear or Usage_stratum  as 

explanatory variables.   

kWhit=α+ β*M-Powerit + αi +εwt+τit                                           (2) 

Zip code-time fixed effects: Neighborhood time-variant factors such as peer effects and 

neighborhood infrastructure development might also influence the participation in pre-paid plan 

and energy consumption. Thus we include a zip code-time fixed effects (εzt) as shown in equation 

(3) to control for these neighborhood time-variant factors.  

kWhit=α+ β*M-Powerit + αi +εzt+τit                                (3) 

Entity-year fixed effects: Ideally entity-time fixed effects at a coarser time level can be 

used to control for individual level time-variant unobservables at the coarser time level. Our 

dataset has the monthly electricity bill information, which means entity-year or entity-quarter 

fixed effects can be utilized.  For summer study, the pre-test and post-test periods are in two 

separate years. Thus the treatment variable M-Powerit does not vary for an individual within a 

given time frame finer than a year for summer study. As a result, we can’t include entity-year 

fixed effects in the summer study. However, winter study spans three years and for the treatment 

groups the treatment variable M-Powerit does vary in 2009. Thus we include the entity-year fixed 

effects (αiy) for the winder study as the third robustness check and make individual observation at 

monthly level, as shown in equation (4).  

kWhit=α+ β*M-Powerit + αiy +εt+τit                                (4) 
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Results of the robustness checks are listed in Table 10 and the results show that the pre-

paid plan still has statistically significant influence on electricity consumption reduction.  

<Insert Table 10 here> 

8. Welfare and policy implications 

Surveys show that on average M-Power customers charge their pre-paid cards 3~4 times per 

month and customers drive 2-3 miles (round trip) to purchase the power (EPRI, 2010b). 

Assuming a 23.3 mpg fuel economy in 2010 (BTS, 2014) and 3$/gallon gas price, this amounts 

to extra monetary cost of $0.3 per month. Because the pay centers are usually located at grocery 

stores so customers can charge their cards while doing grocery shopping. Thus the marginal cost 

of time to charge the cards is low. On average, M-Power customers save 6kWh per day. SRP 

residential average electricity price is $0.1/kWh. So the saved energy cost is $0.6 per day or $18 

per month, which is significantly higher than the monthly monetary cost of going to the pay 

center. Thus there is apparent monetary gain of pre-paid customers. Future analyses will be 

conducted to evaluate comprehensive welfare impact, when data on the cost and benefit of utility 

companies is available.  

In addition to monetary rewards to the consumers, pre-paid electricity plan also reduces 

the negative externalities associated with consuming fossil fuel-generated electricity such as 

carbon emissions and emissions of other environmental pollutants. With the challenge of energy 

independence and climate change, policy makers need to identify cost-effective and efficient 

policy instruments and programs to reduce consumption of fossil fuels. This study shows that 

pre-paid electricity plan can be an effective instrument to reduce carbon emissions and energy 

consumption and in the meanwhile have the potential to achieve welfare gain. Compared to other 
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types of energy behavioral programs, pre-paid plan achieves higher percentage of energy savings 

– 12% as found in this study. For example, Allcott (2011b) finds that behavioral interventions of 

providing home energy reports compared to peers can save energy consumption by about 2%. 

Faruqui et al. (2010) finds that in-home displays (IHDs) alone reduce energy consumption by 

about 7%. The reasons for the much higher energy reduction rate of pre-paid program could be, 

as demonstrated in the theoretical framework, that pre-paid plan can significantly reduce the 

inattention problem on energy consumption.  In addition, the pre-paid program analyzed in this 

study also installs IHDs and there is still additional 5% savings compared to programs of only 

IHDs. This means that the payment procedure itself of the pre-paid program also contributes to 

energy savings. Thus it is important to bring policy makers’ attention to pre-paid electricity 

programs as potential instruments for reducing carbon emissions and energy consumption.  

9. Conclusions 

In a pre-paid electricity plan, customers pay in advance for the amount of electricity they can 

consume. When the pre-paid amount is close to being used up, customers then add money to 

their accounts in order to continue electricity usage. A pre-paid plan can help energy 

conservation and thus can be a potential compliance mechanism for the recent EPA’s proposed 

rule on reducing carbon emissions from existing power plants (EPA, 2014).  

This paper first demonstrates using basic economic theory that here are four possible 

channels for the reduction in electricity consumption from a pre-paid plan: nudging, price 

effects, information provision, and costs of being disconnected. Then, using customer level 

residential billing data from 2008-2010 of a major utility company in Phoenix metropolitan area, 

this study adopts a matching approach and a difference-in-differences method to estimate 
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empirically the impact of switching to a pre-paid electricity plan on residential electricity 

consumption, after correcting for selection bias. Findings indicate that switching to a pre-paid 

program is associated with a 12% reduction in electricity consumption. We also explore the 

heterogeneity in the response to pre-paid electricity pricing by wealth level. Using arrear amount 

as a proxy for wealth, we find that customers with lower level of wealth tend to experience 

greater electricity reduction after the switch. In addition, results show that pre-paid customers 

save more electricity in the summer than winter, which has important implication for managing 

peak demand and load shape for utility companies since summer is when system peak demand 

usually happens.  

The exact mechanisms for the energy conservation need to be empirically tested. SRP 

plans to implement online SmartCard charging platform, which can significantly reduce the cost 

of going to a pay center. If after implementing the online platform there is still conservation in 

energy, the conservation would then come from nudging, price effects and information provision 

channels. Further experiments such as comparing pre-paid programs with and without in-home 

displays can help disentangle the impacts between nudging and information provision.  
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Tables  

 

Table 1. Summary of study design 
 Summer study Winter study 
Pre-test  period (matching 
period) 

05/2008-10/2008 11/2008-04/2009 

Treatment starting period 11/2008 – 04/2009 05/2009 and 10/2009 
Post-test period 05/2009-10/2009 11/2009-04/2010 
 
Matching criteria 

1. Location:  same city, zip code, and street name 
2. Pre-test consumption level:  average monthly kWh 

 
 

 

 

 

 

 

 

Table 2. Summary statistics for summer and winter studies 
Summer study: pre-test period (May-Oct, 2008); post-test period (May-Oct, 2009) 
Variable  Obs Mean Std. Dev. Min Max 
M-Power customers 
(daily kWh) 

pre-test period 363 58.656 25.366 13.315 188.736 
Post-test period 363 52.013 22.639 8.239 138.315 

Control customers 
(daily kWh) 

pre-test period 363 57.373 22.364 12.750 120.276 

 Post-test period 363 57.618 21.701 13.141 124.354 
Balance check for the treatment and control groups:  SDM=0.05    VR=1.26  
       
Winter study: pre-test period (Nov. 2008-April, 2009); post-test period (Nov. 2009-April, 2010) 
Variable  Obs Mean Std. Dev. Min Max 
M-Power customers 
(daily kWh) 

pre-test period 1278 32.260 14.723 6.154 95.495 

 Post-test period 1278 27.617 13.148 4.798 94.590 
Control customers 
(daily kWh) 

pre-test period 1278 32.071 12.409 7.500 102.842 

 Post-test period 1278 32.382 12.154 7.903 88.238 
Balance check for the treatment and control groups:  SDM=0.01    VR=1.25 
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Table 3: T-tests and non-parametric tests 
Summer study      
Subtraction method: test for 
Tpost-Tpre=Cpost-Cpre 

Percentage method: test for 
(Tpost/Tpre)/(Cpost/Cpre)=1 

Average Tpost-Tpre= -6.64 
Average Cpost-Cpre= 0.24 

Average (Tpost/Tpre)/(Cpost/Cpre)=0.90 

 Test statistics P-value  Test statistics P-value 
T-test t=-10.2706 0.0000 T-test t= -8.4511 0.0000 
Wilcoxon signed-
rank test 

z=-10.037 0.0000 Wilcoxon signed-
rank test 

z=-9.715 0.0000 

 
Winter study 
Subtraction method: test for 
Tpost-Tpre=Cpost-Cpre 

Percentage method: test for 
(Tpost/Tpre)/(Cpost/Cpre)=1 

Average Tpost-Tpre= -4.64 
Average Cpost-Cpre= 0.31 

Average (Tpost/Tpre)/(Cpost/Cpre)=0.86 

 Test statistics P-value  Test statistics P-value 
T-test t=-21.7461 0.0000 T-test t= -22.7998 0.0000 
Wilcoxon signed-
rank test 

z=-20.781 0.0000 Wilcoxon signed-
rank test 

z=-20.283 0.0000 
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Table 4. Random effects model of summer study. Dependent variable: average daily kWh 
Model number (1) (2) (3) (4) (5) 
M-Power: dummy variable 
indicating whether on M-Power 
program 

-6.780*** -7.310*** -6.897*** -5.284*** -12.78*** 
(0.687) (0.695) (0.647) (0.912) (1.256) 

Arrear  0.0185*** 0.00401*** 0.0202*** 0.00528*** 
  (0.003) (0.001) (0.003) (0.001) 
Arrear*M-Power    -0.00630*** -0.00200 
    (0.002) (0.002) 
Stratum 
dummy 
variables 1 
 
Base case: S5, 
the highest 
usage stratum 

S1   -69.41***  -72.37*** 
   (1.511)  (1.599) 
S2   -56.28***  -59.14*** 
   (1.119)  (1.184) 
S3   -44.44***  -46.41*** 
   (0.968)  (1.025) 
S4   -29.20***  -30.82*** 
   (0.863)  (0.915) 

Interaction 
terms between 
stratum 
variables and 
M-Power 
 
Base case: S5, 
the highest 
usage stratum 

S1*M-Power     12.01*** 
     (2.12) 
S2*M-Power     11.59*** 
     (1.58) 
S3*M-Power     7.979*** 
     (1.35) 
S4*M-Power     6.468*** 
     (1.19) 

Constant 58.01*** 54.94*** 89.38*** 54.66*** 90.74*** 
 (0.856) (0.992) (0.761) (0.996) (0.791) 
Time random effects Y Y Y Y Y 
Entity random effects Y Y Y Y Y 
# of observations 1452 1452 1452 1452 1452 
Note: Clustered standard errors in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 
1    S1: summer monthly kWh<400;                 S2: 400≤summer monthly kWh<850;   
   S3: 850≤summer monthly kWh<1300;       S4: 1300≤summer monthly kWh<1800;     
   S5: 1800≤summer monthly kWh<2600. 
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Table 5. Fixed effects model of summer study. Dependent variable: average daily kWh 
Model number (6) (7) (8) 
M-Power: dummy variable indicating whether 
on M-Power program 

-6.888*** -4.420*** -13.38*** 
(0.702) (0.927) (1.38) 

Arrear*M-Power  -0.00752*** -0.00237 
  (0.002) (0.002) 
Interaction terms 
between stratum 
variables and M-
Power 1 

 

Base case: S5, the 
highest usage 
stratum 

S1*M-Power   13.04*** 
   (2.26) 
S2*M-Power   12.68*** 
   (1.68) 
S3*M-Power   9.134*** 
   (1.43) 
S4*M-Power   7.679*** 
   (1.27) 

Constant  58.01*** 58.01*** 58.01*** 
 (0.25) (0.25) (0.23) 
Time fixed effects Y Y Y 
Entity fixed effects Y Y Y 
# of observations 1452 1452 1452 
Note: Clustered standard errors in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 
1    S1: summer monthly kWh<400;                 S2: 400≤summer monthly kWh<850;   
   S3: 850≤summer monthly kWh<1300;       S4: 1300≤summer monthly kWh<1800;     
   S5: 1800≤summer monthly kWh<2600.      
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Table 6. Random effects model of winter study. Dependent variable: average daily kWh 
Model number (9) (10) (11) (12) (13) 
M-Power: dummy variable 
indicating whether on M-Power 
program 

-4.936*** -5.105*** -4.927*** -4.018*** -8.278*** 

(0.227) (0.230) (0.227) (0.304) (0.454) 
Arrear 

 
0.00645*** 0.000192 0.00751*** 0.00111 

 
 

(0.001) (0.001) (0.001) (0.001) 
Arrear*M-Power 

   
-0.00478*** -0.00199** 

 
   

(0.001) (0.001) 
Stratum 
dummy 
variables 1 
 
Base case: S6, 
the highest 
usage stratum 

S1   -35.79*** 
 

-37.21*** 
   (3.20) 

 
(3.26) 

S2   -29.14*** 
 

-30.54*** 
   (0.94) 

 
(0.96) 

S3   -25.65*** 
 

-27.16*** 
   (0.63) 

 
(0.64) 

S4   -20.95*** 
 

-22.29*** 
   (0.54) 

 
(0.56) 

S5   -13.71***  -14.81*** 
   (0.46)  (0.47) 

Interaction 
terms between 
stratum 
variables and 
M-Power 
 
Base case: S6, 
the highest 
usage stratum 

S1*M-Power   
  

5.736** 
   

  
(2.803) 

S2*M-Power   
  

5.514*** 
   

  
(0.840) 

S3*M-Power   
  

5.987*** 
   

  
(0.567) 

S4*M-Power   
  

5.321*** 
   

  
(0.490) 

S5*M-Power     4.348*** 
     (0.412) 

Constant 32.17*** 31.49*** 46.23*** 31.37*** 47.09*** 
 (0.26) (0.29) (0.39) (0.29) (0.40) 
Time random effects Y Y Y Y Y 
Entity random effects Y Y Y Y Y 
# of observations 5112 5112 5112 5112 5112 
Note: Clustered standard errors in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 
1  S1: summer monthly kWh<400;                 S2: 400≤summer monthly kWh<850;   
   S3: 850≤summer monthly kWh<1300;       S4: 1300≤summer monthly kWh<1800;     
   S5: 1800≤summer monthly kWh<2600;     S6: summer monthly kWh ≥ 2600.     
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Table 7. Fixed effects model of winter study. Dependent variable: average daily kWh 
Model number (14) (15) (16) 
M-Power: dummy variable indicating whether 
on M-Power program 

-4.955*** -3.514*** -8.021*** 
(0.234) (0.309) (0.471) 

Arrear*M-Power 
 

-0.00617*** -0.00259*** 
 

 
(0.0009) (0.0009) 

Interaction terms 
between stratum 
variables and M-
Power 1 

 

Base case: S6, the 
highest usage 
stratum 

S1*M-Power 
  

5.814** 
 

  
(2.871) 

S2*M-Power 
  

5.153*** 
 

  
(0.862) 

S3*M-Power 
  

5.893*** 
 

  
(0.581) 

S4*M-Power 
  

5.110*** 
 

  
(0.502) 

S5*M-Power   4.272*** 
   (0.422) 

Constant  32.17*** 32.17*** 32.17*** 
 (0.083) (0.082) (0.081) 
Time fixed effects Y Y Y 
Entity fixed effects Y Y Y 
# of observations 5112 5112 5112 
Note: Clustered standard errors in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 
1    S1: summer monthly kWh<400;                 S2: 400≤summer monthly kWh<850;   
   S3: 850≤summer monthly kWh<1300;       S4: 1300≤summer monthly kWh<1800;     
   S5: 1800≤summer monthly kWh<2600;     S6: summer monthly kWh ≥ 2600.     
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Table 8. Random effects model of all year study. Dependent variable: average daily kWh 
Model number (17) (18) (19) (20) (21) 
M-Power: dummy variable indicating 
whether on M-Power program 

-6.858*** -7.149*** -6.910*** -5.446*** -12.26*** 
(0.391) (0.394) (0.388) (0.471) (0.702) 

Arrear  0.0103*** 0.00246*** 0.0115*** 0.00350*** 
  (0.001) (0.0009) (0.0012) (0.0009) 
Arrear*M-Power    -0.00530*** -0.00235*** 
    (0.0008) (0.0008) 
Winter -25.82*** -25.21*** -37.02*** -25.13*** -37.55*** 
 (0.66) (0.66) (0.50) (0.65) (0.50) 
Winter*M-Power 1.946*** 1.979*** 1.903*** 1.482*** 4.000*** 
 (0.403) (0.403) (0.397) (0.409) (0.44) 
Stratum dummy 
variables 1 
 
Base case: S6, the 
highest usage 
stratum 

S1   -58.51***  -61.23*** 
   (1.60)  (1.64) 
S2   -38.83***  -40.93*** 
   (0.88)  (0.90) 
S3   -29.65***  -31.33*** 
   (0.67)  (0.68) 
S4   -21.39***  -22.83*** 
   (0.59)  (0.61) 
S5   -10.83***  -11.76*** 
   (0.53)  (0.54) 

Interaction terms 
between stratum 
variables and M-
Power 
 
Base case: S6, the 
highest usage 
stratum 

S1*M-Power     10.76*** 
     (1.41) 
S2*M-Power     8.283*** 
     (0.791) 
S3*M-Power     6.596*** 
     (0.597) 
S4*M-Power     5.667*** 
     (0.530) 
S5*M-Power     3.634*** 
     (0.467) 

Constant 57.99*** 56.30*** 82.93*** 56.09*** 84.30*** 
 (0.58) (0.61) (0.68) (0.61) (0.69) 
Time random effects Y Y Y Y Y 
Entity random effects Y Y Y Y Y 
# of observations 6564 6564 6564 6564 6564 
Note: Clustered standard errors in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 
1    S1: summer monthly kWh<400;                 S2: 400≤summer monthly kWh<850;   
   S3: 850≤summer monthly kWh<1300;       S4: 1300≤summer monthly kWh<1800;     
   S5: 1800≤summer monthly kWh<2600;     S6: summer monthly kWh ≥ 2600.     
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Table 9. Fixed effects model of all year study. Dependent variable: average daily kWh 
Model number (22) (23) (24) 
M-Power: dummy variable indicating whether 
on M-Power program 

-6.940*** -4.755*** -11.81*** 
(0.397) (0.475) (0.73) 

Arrear*M-Power 
 

-0.00666*** -0.00308*** 
 

 
(0.0008) (0.0008) 

Winter*M-Power 2.000*** 1.369*** 3.960*** 
 (0.407) (0.411) (0.449) 
Interaction terms 
between stratum 
variables and M-
Power 1 

 

Base case: S6, the 
highest usage 
stratum 

S1*M-Power 
  

10.58*** 
 

  
(1.45) 

S2*M-Power 
  

7.971*** 
 

  
(0.811) 

S3*M-Power 
  

6.456*** 
 

  
(0.612) 

S4*M-Power 
  

5.476*** 
 

  
(0.542) 

S5*M-Power   3.467*** 
   (0.478) 

Constant  37.88*** 37.88*** 37.88*** 
 (0.084) (0.084) (0.081) 
Time fixed effects Y Y Y 
Entity fixed effects Y Y Y 
# of observations 6564 6564 6564 
Note: Clustered standard errors in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 
1    S1: summer monthly kWh<400;                 S2: 400≤summer monthly kWh<850;   
   S3: 850≤summer monthly kWh<1300;       S4: 1300≤summer monthly kWh<1800;     
   S5: 1800≤summer monthly kWh<2600;     S6: summer monthly kWh ≥ 2600.     
 

 

 

 

 

 

 

 



39 
 

 

Table 10. Results of robustness checks. Dependent variable: average daily kWh 
Robustness check type Wealth stratum-time 

fixed effects 
Zip code-time  
fixed effects 

Entity-year 
fixed effects 

Study phase Summer Winter Summer Winter Winter only 
M-Power: dummy variable 
indicating whether on M-
Power program 

-5.776*** -4.188*** -6.097*** -4.243*** -4.954*** 
(0.961) (0.316) (1.053) (0.315) (0.234) 

Constant  57.703*** 32.312*** 57.884*** 32.324*** 32.425*** 
 (0.456) (0.089) (0.501) (0.089) (0.079) 
Entity fixed effects Y Y Y Y  
Wealth stratum-time fixed 
effects 

Y Y    

Zip code-time fixed effects   Y Y  
Month fixed effects     Y 
Entity-year fixed effects     Y 
# of observations 1452 5112 1452 5112 30672 
Note: Clustered standard errors in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01  

 

 

 

 


