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Abstract

We consider the problem of the public release of statistical information about
a population–explicitly accounting for the public-good properties of both data
accuracy and privacy loss. We first consider the implications of adding the
public-good component to recently published models of private data pub-
lication under differential privacy guarantees using a Vickery-Clark-Groves
mechanism. We show that data quality will be inefficiently under-supplied.
Next, we develop a standard social planner’s problem using the technology
set implied by (ε, δ)-differential privacy with (α, β)-accuracy for the Multi-
plicative Weight Exponential Mechanism query release system to study the
properties of optimal provision of data accuracy and privacy loss when both
are public goods. Using the production possibilities frontier implied by this
technology, explicitly parameterized interdependent preferences, and the so-
cial welfare function, we display properties of the solution to the social plan-
ner’s problem. Our results directly quantify the optimal choice of data accu-
racy and privacy loss as functions of the technology and preference parame-
ters. Some of these properties can be quantified using population statistics on
marginal preferences and correlations between income, data accuracy prefer-
ences, and privacy loss preferences that are available from survey data. Our
results show that government data custodians should publish more accurate
statistics with weaker privacy guarantees than would occur with purely pri-
vate data publishing. Our statistical results using the Federal Statistical Sys-
tem Public Opinion Survey combined with the American Community Sur-
vey and the National Health Interview Survey indicate that the welfare losses
from under-providing data accuracy while over-providing privacy protection
can be substantial.

Keywords: Demand for public statistics; Technology for statistical agencies; Opti-
mal data accuracy; Optimal confidentiality protection



1 Introduction

Like so many other ideas in information economics, George Stigler (1980) began

the analysis of the economics of privacy. That analysis emerged alongside the ob-

servation by Posner (1981), drawn from contemporary legal analyses, of privacy

as the right to conceal details about one’s life from others, including the govern-

ment. While most of Stigler’s treatment addresses the origin of the demand for

privacy by individuals, he identified the source of angst driving the public discus-

sions in the 1970s by focusing squarely on the observation that: “[g]overnments

(at all levels) are now collecting information of a quantity and in a personal detail

unknown in history” (p. 623). And this more than a decade before the birth of

the Internet. Stigler correctly predicted that the problem would be how to prop-

erly constrain the use of this information rather than how to defend against its

acquisition in the first place.

As Acquisti and Varian (2005) note, the privileged informational position of

sellers in this market allows individual-level price discrimination on a massive

basis. Consumers may have a strong interest in concealing the data that allow this

price customization. Acquisti et al. (2013) experimentally evaluate individuals’

willingness-to-pay to protect otherwise public information and their willingness-

to-accept payment for permitting the disclosure of otherwise private information.

These experiments are explicitly set in the context of commercial enterprises that

seek to acquire these private data as part of a mutually beneficial exchange with

well-informed consumers. The prototypical example is online shopping. In the

extensive literature that they review, the consumer’s benefit from increased pri-

vacy is a direct consequence of the value of her private information to the coun-

terparty in a commercial transaction. Specifically, they studied differences in con-

sumer behavior when choosing between a $10 anonymous loyalty card and a
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$12 identifiable card (transactions could be linked to the actual consumer). Ac-

quisti et al. find that their experimental subjects displayed, for monetarily equiv-

alent transactions: (1) unequal willingness-to-pay to protect private data versus

willingness-to-accept payment to disclose the same private data and (2) order ef-

fects in their choices. Because of these endowment and order effects, they reject

the normative conclusion that consumers value privacy very little based on their

observed willingness to part with these data for very little compensation when

shopping online. In this paper, we recognize such a behavioral effect by using

explicit formulations of the payment systems and interdependent preferences to

reason about the economic value of the privacy loss from statistical summaries.

In its current form, the economics of privacy focuses primarily on the eco-

nomic value of information about the habits and characteristics of consumers that

are known to the curators of databases produced by intermediating commercial

transactions and social networks on the Internet. The information is known to

these providers because it was either shared voluntarily or harvested without ex-

plicit notice during an interaction of the consumer with the Internet site. Acquisti

et al. (2016) survey the informational asymmetries that result from this shared

information. While they focus almost exclusively on the private value of the in-

formation, their survey also covers aspects of the externalities produced by these

information exchanges. In the final section of their paper, they discuss some as-

pects of the scientific value of these databases, including those held by govern-

ment agencies, noting that “[h]ow to balance researchers’ and society’s needs to

access granular data with the need to protect individuals’ records is a question

that simultaneously involves economists and scholars in other disciplines, such

as statisticians and computer scientists” (p. 43). That challenge is the core of our

paper.
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The Role of Statistical Agencies

What does the economics of privacy have to say about Stigler’s Orwellian govern-

mental databases? For agencies that enforce laws with criminal and civil penal-

ties, the citizen/consumer’s interest in concealing certain private information is

apparent and amenable to study using the private valuation models we just in-

troduced. But what would Stigler have said about the appropriate way to think

about constraining the government’s use of private personal information when

that information is collected by an agency whose sole statutory purpose is to pub-

lish statistical summaries based on those personal data?

Stigler explicitly acknowledged the public-good nature of these publications,

and, of course, he applied the Coase Theorem to make the following argument.

The private information will be collected and disseminated efficiently if the prop-

erty rights are fully assigned and the transactions costs of acquisition and dissemi-

nation are minimized. He recognized that dissemination was a very low marginal

cost activity, even in 1980, and that using markets to control the re-use of the in-

formation after it had been acquired in a voluntary transaction between informed

adults might remain very difficult. There is an important insight here for model-

ing statistical agencies. If one wishes to study their optimal use of private data,

one must understand the derived demand for the statistical information those

data convey to the citizens. In order to apply the Coase Theorem, one must un-

derstand both the social costs of the use of private information by agencies that

collect it and the social benefits derived from its dissemination in statistical sum-

maries. Whether or not there is a market failure to analyze, understanding effi-

cient breaches of privacy requires modeling their full social cost and benefit.

In this paper we focus on the public-good properties of the statistical informa-

tion disseminated by government agencies and the public-good properties of the
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privacy protections they provide. We use techniques from economics, computer

science, and statistics to make our arguments, but our main goal is to demon-

strate that using methods from all three disciplines permits a more complete un-

derstanding of both the privacy protection technologies and the sources of the

citizen/consumer’s interest in accurate public data.

This is not a trivial proposition. Around the world, national statistical offices

exist for the primary purpose of collecting and publishing data about their cit-

izens and the businesses that operate within their jurisdictions. Since these are

costly functions, and since most statistical agencies are prohibited from perform-

ing law enforcement functions using the data that they collect for statistical pur-

poses, we need to model how the business of data provision directly relates to

citizen demand for particular kinds of information. In our model, this demand

arises because utility depends upon properties of the population that require sta-

tistical data to assess. This is not a new idea. Akerlof (1997) posited essentially the

same interdependent preferences that we use when he hypothesized that utility

might depend upon the deviation of the individual’s choice from the average in

the economy. How can one evaluate such preferences without data on the popu-

lation averages? The literature that grew out of Akerlof’s work took the existence

of fully accurate population statistics as given, and assumed that they could be

collected without any privacy loss.

Our consumers also display preference interdependence. Specifically, we as-

sume that individuals care about their place in the income distribution and their

relative health status within the population. They cannot evaluate these relative

preferences without statistical information. They explicitly recognize that such

data can have varying quality. If they acquire statistical information of known

quality from a private provider who acquires data-use rights through a Vickery-
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Clark-Groves (VCG) auction, the consumers won’t buy accurate enough data be-

cause their private demand will not reflect the benefit that others in the population

get from knowing that same information with given quality. We solve the com-

plete social planner’s problem when the accuracy of the published statistical data

and the privacy loss from providing the confidential inputs are both public goods.

We prove that the socially optimal data accuracy exceeds the VCG levels and the

socially optimal privacy losses are greater than those generated by private data

suppliers using the VCG mechanism.

Our work is thus related to a burgeoning literature in public economics on

the role of preference interdependence in the provision of public goods. It can be

difficult to show that relative status affects individual behavior because models

of interdependent preferences are not usually identified without restrictive as-

sumptions (Postlewaite 1998; Luttmer 2005). Preference interdependence is also

important for explaining discrepancies between macroeconomic and microeco-

nomic outcomes (Futagami and Shibata 1998) and for the design of public policy.

Aronsson and Johansson-Stenman (2008) show that preference interdependence

affects the optimal provision of public goods, but the direction is theoretically

ambiguous. Their work also shows that preference interdependence will affect

the optimal tax schedule–an aspect of the public goods problem we ignore in our

formulation in order to focus on the optimal trade-off between privacy loss and

data accuracy. We think that our use of preference interdependence to generate

the demand for accurate statistical data is an important contribution to this litera-

ture.
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1.1 Technologies for Privacy Protection

Like so many other ideas in the efficient operation of statistical agencies, Ivan Fel-

legi (1972) initiated the statistical analysis of data confidentiality. Fellegi under-

stood that ensuring the confidentiality of individual data collected by the agency,

an essential obligation, was most likely to be threatened by what he called “resid-

ual disclosure”–what would now be called a “subtraction attack” in computer

science or a “complementary disclosure” in statistical disclosure limitation (SDL).

This breach of privacy occurs when the statistical agency releases so much sum-

mary information that a user can deduce with certainty some of the private identi-

ties or attributes by subtracting one tabular summary from another. Fellegi estab-

lished the properties of what became the workhorse of SDL–primary and comple-

mentary suppression of items in the published statistical tables. Risky items–ones

that reveal a citizen’s private data–are suppressed–not published in the public

table–and just enough non-risky items are also suppressed so that the table is

provably secure from a subtraction attack. Armed with this tool, statistical agen-

cies around the world adopted this practice and a large literature, nicely sum-

marized in Duncan et al. (2011), emerged with related techniques. The choice of

primary suppressions is usually based on one of several risk measure (see, for

example, Federal Committee on Statistical Methodology (2005)). The choice of

complementary suppressions is inherently ad hoc in the sense that many sets of

complementary suppressions meet the criteria for protecting the risky items but

the methods provide limited guidance for choosing among them.

To help assess the trade-off between privacy loss and data quality, statisticians

developed another important disclosure limitation tool that is immediately ac-

cessible to economists–the risk-utility (R − U ) confidentiality map. The R − U

confidentiality map first appeared in Duncan and Fienberg (1999), who used it to
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characterize three different SDL strategies for publishing tabular count data. They

did not label the graph an R−U confidentiality map. Duncan et al. (2001) named

the R − U confidentiality map. They used it to model the trade-off between the

disclosure risk associated with a particular privacy protection method and the ac-

curacy of the released statistical summaries, which they called “data utility.” A

full treatment can be found in Duncan et al. (2011, p. 125-135). Economists will

instantly recognize the R − U confidentiality map as the production possibilities

frontier for the data publication technology when it is constrained by the require-

ment to protect against privacy loss. In this paper, we complete the formalization

of this idea by deriving the exact PPF for our privacy-preserving publication tech-

nology as part of our public-goods model. In what follows, we will reserve the

term “utility” for its usual role in economic theory.

It was another seminal contributor to the methodology of statistical agencies,

though, who first posed the SDL problem in the form that has become the dom-

inant methodology in computer science. Tore Dalenius (1977) hypothesized that

it was insufficient for a statistical agency to protect against direct disclosures of

the type studied by Fellegi. In Dalenius’ model, the statistical agency also had to

protect against providing so much information that a user could “determine the

value” of a confidential item “more accurately than is possible without access to”

the publicly released statistical summary (p. 433). This definition of a statistical

privacy breach is now called inferential disclosure. In statistics, Duncan and Lam-

bert (1986) completed the mathematical formalization of inferential disclosure by

showing that the appropriate tool for studying such privacy losses was the poste-

rior probability of the confidential item given the released statistical summaries.

In cryptography, Goldwasser and Micali (1982; 1984) defined a semantically se-

cure encryption as one in which the posterior probability of any cleartext message,
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given the cyphertext, equals the prior probability of the same message.1 Thus,

bounding the posterior odds of an inferential disclosure, the conceptual analog of

an unauthorized decryption, became the formalization at the heart of the modern

data privacy literature.

1.2 The Emergence of the Differential Privacy Paradigm

Cryptographers know how to protect secrets. In the early 2000s, a group of cryp-

tographers led by Cynthia Dwork (2006) and including Dwork et al. (2006) formal-

ized the privacy protection associated with SDL in a model called ε-differential

privacy. Using this framework, Dwork and Naor (2008) proved that it was im-

possible to deliver full protection against inferential disclosures because a privacy

protection scheme that provably eliminated all such disclosures was equivalent

to a semantically secure encryption of the confidential data, and therefore use-

less for data publication.2 She proposed developing a privacy protection method

that “captures the increased risk to one’s privacy incurred by participating in a

database” (p. 1), which she parameterized with ε ≥ 0, where ε = 0 is full protec-

tion.

Dwork (2008, p. 3) foreshadowed our view that the differential privacy param-

eter is a public good when she wrote: “[t]he parameter ε ... is public. The choice

of ε is essentially a social question.” We begin our own analysis using the elec-

tronic commerce view of McSherry and Talwar (2007), which closely resembles

the framework that grew out of Stigler’s “incentive to conceal” notion of personal

privacy. Data custodians may purchase data-use rights from individuals whose

information was collected for legitimate but unrelated business purposes in order

1We thank Cynthia Dwork for drawing our attention to the work of Goldwasser and Micali.
2Evfimievski et al. (2003) prove a similar result using a related definition of privacy.
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to compute and release an additional statistical summary that was not originally

planned. The purchase is a private transaction between informed agents. How-

ever, a direct consequence of the electronic commerce privacy work, as proven by

Ghosh and Roth (2011), is that privacy protection for this type of statistical data

release has a public good character–it is non-rival (Mas-Colell et al. 1995, p. 359)–

just as Dwork originally noted.

The amount of privacy an individual sacrifices by participating in an ε-differentially

private mechanism neither exacerbates nor attenuates the expected sacrifice of pri-

vacy for any other individual in the database. The protection provided by differ-

ential privacy (our Definition 2, which is identical to the one found in Dwork and

Roth (2014)) bounds the supremum across all individuals of the privacy loss–it is

worst-case protection for the entire database. Thus, differential privacy is inher-

ently non-rival. Any improvement in privacy protection is enjoyed by all entities

in the database, and any reduction in privacy is suffered by all entities.

A subtle distinction emerges when considering the difference between volun-

tary and compulsory systems for participation in the database versus participa-

tion in the statistical summaries. Specifically, when an opt-in system is used for

producing the summaries, all those who elect to participate get ε-differential pri-

vacy by construction of the payment system. Those who opt out get 0-differential

privacy. In compulsory participation systems, all entities in the database get ε-

differential privacy. In either case, all members of the population receive at least

ε-differential privacy because ε > 0. For statistical agencies using population

censuses and administrative record systems, participation in the database and

in the statistical summaries is usually compulsory. Our analysis of the subop-

timality of private provision permits opting out of the statistical summaries but

not the database. Our analysis of optimal public provision assumes compulsory
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participation in the both the database and the statistical summaries. The opt-in

method, which is a private provider’s only feasible technology, may produce bi-

ased summaries–a possibility that we do not analyze in this paper because it was

already recognized by Ghosh and Roth (2011), who carefully defined the target

level of accuracy to control self-selection bias.3

There were precursors to the differential privacy paradigm. Denning (1980)

studied the security risks of releasing summaries based on samples from a confi-

dential database. Agrawal and Srikant (2000) coined the phrase privacy-preserving

datamining and analyzed some preliminary ways to accomplish it. Sweeney (2002)

formalized the protection provided by SDL methods that guard against identity

disclosure with a model known as k-anonymity. Machanavajjhala et al. (2007) for-

malized SDL methods that guard against attribute disclosure with a model known

as `-diversity. Evfimievski et al. (2003) explicitly modeled privacy breaches based

on posterior predictive distributions in a formal setting very similar to differential

privacy. But it is the differential privacy algorithms, and their explicit formaliza-

tion of inferential disclosure protection, that have become the workhorse of the

computer science data-privacy literature. We base much of our modeling on the

methods in Dwork and Roth (2014). For economists, Heffetz and Ligett (2014) is a

very accessible introduction.

1.3 Current Economic Uses of Differential Privacy

It isn’t just statistical agencies that release data as a public good. The standard

definition of a public good is that its use by one individual does not preclude

its use by another–non-rivalry in consumption. Sometimes a second condition

3They nevertheless acknowledge that bias in the privately-provided summary statistics may
still exists in their solution (Ghosh and Roth 2011, Remark 5.2).
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is added that one person’s use of the public good does not exclude another’s

use–non-exclusion in consumption. The second condition is not essential, and

governments often expend resources to allow exclusive use of otherwise public

data when they enforce patents and copyrights. It is easy to see how a statistical

agency’s publication of data on the distribution of income in the society, the cost of

living, incidence of diseases, or national income accounts satisfies the non-rivalry

and non-exclusivity conditions. It is perhaps less obvious, but equally true, that

the release of statistics about users, searches, “likes,” or purchases associated with

businesses like Amazon, Facebook and Google also satisfies these conditions. In

addition, the publication of a scientific article based on confidential information

provided by a statistical agency or proprietary information provided by a busi-

ness satisfies these conditions.

Our work builds on the very thorough analysis in Ghosh and Roth (2011), who

study the specific problem of compensating a sample of individuals for the right

to use their data to compute a statistic from a private database already containing

those data–think: tabulations using Facebook friend networks. Each individual

who agrees to sell her data-use right is included in the published statistic, which

has a specific level of accuracy and is computed using an auction-determined

level of differential privacy protection. Their central contribution is to characterize

the properties of a VCG mechanism that achieves a specified query accuracy for

the population statistic with the least-cost acquisition of data-use rights (privacy

loss).4

We build on the Ghosh and Roth problem by allowing the privacy-preserving

answer to the query to be a public good. This is clearly within the spirit of their

4The electronic commerce applications of differential privacy begin with the work of McSherry
and Talwar (2007), which studied mechanism design using differential privacy. They showed that
mechanisms designed using ε-differential privacy limit the players’ incentive to lie because they
bound the expected gain from any coalition of size t deviating from truth-telling by (exp (tε)− 1).
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work since they motivate their problem by modeling a data analyst who wishes

to obtain the most accurate estimate of a statistic within the constraints of a grant

budget. Most sponsored research is published in open-access scientific journals,

making the statistic under study by Ghosh and Roth a classic public good. Al-

though the scientist elicits data for the study, and subsequently publishes the re-

sults in an open journal, the individuals who sell their data-use rights to the sci-

entist are presumed to get no utility from the published results in the Ghosh and

Roth framework. We let the subjects care about the quality of the scientific paper.

As noted above, we also consider whether it is reasonable to treat privacy loss

itself as a fully-private good, especially since the Ghosh-Roth mechanism implies

that privacy loss is non-rival. Privacy-preserving publication by statistical agen-

cies treats all citizens as equally protected under the relevant confidentiality laws.

Our paper is therefore the first use of the differential privacy paradigm to compare

the economic implications of public and private provision of privacy-preserving

statistical data in which both data quality and privacy loss are public goods.

1.4 Plan of This Paper

Section 2 provides a concise summary of the privacy and confidentiality mod-

els we use that is accessible to readers familiar with the computer science data-

privacy literature. We also provide sufficient detail on the legal, economic and

statistical underpinnings of our work so that readers can understand the relevance

of our arguments. Section 3 lays out the formal definitions of databases, histogram

representations, query release mechanisms, (ε, δ)-differential privacy, and (α, β)-

accuracy. This section is self-contained and includes a brief restatement of the im-

possibility proof for eliminating inferential disclosures. Section 4 proves the result

that data accuracy is under-provided and privacy loss is too low when a private
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data supplier uses the VCG data-use rights acquisition mechanisms as compared

to the social optimum implied by the full public-goods model. Section 5 develops

an efficient technology for providing accurate public data and differentially pri-

vate protection that admits a proper PPF. Using this technology and well-defined

interdependent preferences we solve the social planner’s problem for the optimal

data accuracy and privacy loss. Section 6 uses data to quantify the parameters of

the social planner’s problem. We consider the publication of income distribution

and relative health status statistics for the population. We quantify the welfare

loss from suboptimal overprovision of privacy protection and underprovision of

data accuracy. Section 7 concludes.

2 Background

2.1 Differential Privacy and Statistical Disclosure Limitation

We work with the concept of differential privacy introduced by Dwork (2006). To

reduce confusion, we note that the SDL literature defines confidentiality protec-

tion as the effort to ensure that a respondent’s exact identity or attributes are not

disclosed in the published data. Computer scientists define data privacy as limits

on the amount of information contained in the published data about any person

in the population, respondent or not. The two literatures have much in common

but the main point of commonality that we use here are definitions of inferential

disclosure, due to Dalenius (1977), and differential privacy, due to Dwork (2006).

Inferential disclosure parameterizes the confidentiality protection afforded by

a particular SDL method using the ratio of the posterior odds of correctly as-

signing an identity or a sensitive attribute to a particular respondent, given the

newly released data, to the prior odds, given all previously released data. Differ-
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ential privacy parameterizes the privacy protection in a data publishing system

by bounding the same posterior odds ratio for all potential respondents in all po-

tential configurations of the confidential data.

2.2 Statistical Data Releases and Privacy Protection Are Both Pub-

lic Goods

Publishing statistical data, whether the output of a government agency or of a

open scientific study, involves making statistical summaries of the information

that has been collected from the population under study available for anyone to

use. Consistent with this principle, we formalize publishing statistical data as ap-

plying a query release mechanism with given privacy and accuracy properties to

a confidential database. Formally, in terms of the differential privacy model sum-

marized in Section 2.1, the answers to a fixed set of queries with (α, β)-accuracy

from the MWEM query release mechanism with (ε, δ)-differential privacy are pub-

lished by the agency. Any individual may, therefore, use these statistics for any

purpose. Hence, they are public goods because their use is both non-rival and

non-exclusive.

We also assume that the ε parameter of the (ε, δ)-differential privacy guarantee

is a public good. Such an assumption means that all citizens are protected by the

same (ε, δ)-differential privacy parameters even though they may place different

utility values on ε. This is our interpretation of the “equal protection under the

law” confidentiality-protection constraint that most national statistical agencies

must provide. See, for example, U.S. Code Title 13 and Title 44 for an explicit

statement of this provision for the American data laws that govern the U.S. Census

Bureau (U.S. Code 1954) and American statistical agencies in general (U.S. Code

2002).
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In this equal-protection sense, privacy protection is non-exclusive in consump-

tion in the same manner as access to legal recourse through the courts is non-

exclusive–it is a right of citizenship. But unlike access to the courts, where there

is rivalry in consumption because one party’s litigation congests the access of an

unrelated party’s litigation, statutory privacy protection is non-rival when it is

provided via differential privacy. The reason for the non-rivalry is that the dif-

ferential privacy protection is “worst case” protection. If the query release mech-

anism’s worst possible breach is limited by the differential privacy bounds, then

every citizen’s protection is increased or decreased when the bounds are tightened

or loosened, respectively. Alice can have more privacy in this sense if and only if

Bob also enjoys the same increment. There is no crowding out of one party’s pri-

vacy protection when privacy protection is provided to another party.

In our formal setup, only the published-data accuracy parameter α and the

privacy protection parameter ε are considered explicit objects of production and

consumption. These are the formal public goods. We hold the other parameters

of the data publication process constant. It is a subject for future work to make

these choices endogenous.

3 Preliminaries

This section provides all formal definitions used in our application of differential

privacy. The goal is to highlight the important tools that may be unfamiliar to

economists and statisticians. Our summary draws on several sources to which

we refer the reader who is interested in more details (Hardt and Rothblum 2010;

Dwork and Roth 2014; Wasserman and Zhou 2010). Our notation follows Dwork

and Roth (2014).
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3.1 Databases, Histograms and Queries

A statistical agency, or other data curator, is in possession of a database, D. We

model D as a table in which each row represents information for a single indi-

vidual and each column represents a single characteristic to be measured. The

database D contains N rows. The set χ describes all possible values the variables

in the columns of the database can take. That is, any row that appears in the

database is an element of χ.5 All variables are discrete and finite-valued. This

does not impose a limitation, since continuous data are always given discrete, fi-

nite representations when recorded on censuses, surveys or administrative record

systems.

3.1.1 Histograms

For our analysis, we represent the database D by its unnormalized histogram x ∈

Z∗|χ|. The notation |χ| represents the cardinality of the set χ, and Z∗ is the set

of non-negative integers. Each entry in x, xi, is the number of elements in the

database D of type i ∈ χ. We use the `1 norm:

||x||1 =

|χ|∑
i=1

|xi| . (1)

Observe that ||x||1 = N , the number of records in the database. Given two his-

tograms, x and y, ||x − y||1 measures the number of records that differ between x

and y. We define adjacent histograms as those for which the `1 distance is at most

5For example, if the variables recorded in the database are a binary indicator for gender, g ∈
{0, 1}, and a categorical index for six different completed levels of schooling, s ∈ {1, . . . , 6}, then
χ = {0, 1} × {1, . . . , 6}.
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1.6

3.1.2 Queries

A linear query is a mapping f : [−1, 1]|χ| × Z∗|χ| → Z∗ such that f(m,x) = mTx

where x ∈ Z∗|χ| and m ∈ [−1, 1]|χ|. A counting query is a special case in which mi is

restricted to take a value in {0, 1}. Counting queries return the number of obser-

vations that satisfy particular conditions. They are the tool an analyst would use

to calculate multidimensional margins for the contingency table representation of

the database. A normalized linear query is a mapping f : [−1, 1]|χ| × Z∗|χ| → [0, 1]

such that if f̃ is a linear query then f(m,x) = f̃(m,x)/||x||1.

We model queries about population proportions, or averages, rather than counts.

These correspond to the proportions from a contingency table or the cell aver-

ages in a general summary table. To that end, we work with normalized linear

queries unless otherwise specified. The use of normalization is not restrictive. It

only affects the functional form of privacy and accuracy bounds via their depen-

dence on the database size ||x||1. Any bound stated in terms of the unnormalized

histograms and queries can be restated in terms of normalized histograms and

queries.

3.2 Query Release Mechanisms, Privacy and Accuracy

We model the data release mechanism as a randomized algorithm. The data cu-

rator operates an algorithm that provides answers to a sequence of k normalized

6If x is the histogram representation of D, y is the histogram representation of D′, and D′ and
is constructed from D by deleting exactly one row, then ||x − y||1 = 1. So, D and D′ are adjacent
databases and x and y are the adjacent histogram representations of D and D′, respectively. Some
caution is required when reviewing related literature because definitions may be stated in terms
of adjacent databases or adjacent histograms.
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linear queries drawn from the query space F .

Definition 1 (Query Release Mechanism) Let F be a set of normalized linear queries

with domain [−1, 1]|χ| × Z∗|χ| and range R ⊆ [0, 1], and let k be the number of

queries to be answered. A query release mechanism M is a random function

M : Z∗|χ|×Fk → Rk whose inputs are a histogram x ∈ Z∗|χ| and a set of k normal-

ized linear queries f = (f1, . . . , fk) ∈ Fk. The probability of observing B ⊆ Rk is

Pr [M(x, (f1, . . . , fk) ∈ B|X = x, F = f ], where Pr [z ∈ B|X = x, F = f ] is the con-

ditional probability given X = x and F = f that the query output is in B ∈ B,

where B are the measurable subsets of Rk.

Differential Privacy

Our definitions of differential privacy and accuracy for the query release mecha-

nism follow Hardt and Rothblum (2010) and Dwork and Roth (2014).

Definition 2 ((ε, δ)-differential privacy) A query release mechanismM satisfies (ε, δ)-

differential privacy if for ε > 0, δ > 0, ∀x, x′ ∈ Nx, and ∀B ∈ B

Pr [M(x, (f1, . . . , fk)) ∈ B] ≤ eε Pr [M(x′, (f1, . . . , fk)) ∈ B] + δ,

where Nx =
{

(x, x′) s.t. x, x′ ∈ Z∗|χ| and ||x− x′||1 = 1
}

and B are the measurable

subsets of the query output space, Rk. The set Nx contains all the adjacent his-

tograms of x.

We now clarify the relationship between differential privacy and inferential

disclosure. Our argument is a simplified version of Dwork (2006) that uses our

definitions. Using Definition 2 consider the ratio that results from using the query

release mechanism on two adjacent histograms x, x′ conditional on the query se-
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quence f1, . . . , fk and δ = 0

Pr [M(x, (f1, . . . , fk)) ∈ B]

Pr [M(x′, (f1, . . . , fk)) ∈ B]
=

Pr [M(x, (f1, . . . , fk) ∈ B|X = x, F = f ]

Pr [M(x′, (f1, . . . , fk) ∈ B|X = x′, F = f ]
.

Without loss of generality the histograms x and x′ can be treated as N samples

from a discrete Multinomial distribution with probabilities π defined over χ, and

holding the query sequence constant atF = f . We can compute Pr [X = x |π,N, F = f ]

and Pr [X = x′ |π,N, F = f ]. A direct application of Bayes Theorem yields

Pr [M(x, (f1, . . . , fk) ∈ B|X = x, F = f ]

Pr [M(x′, (f1, . . . , fk) ∈ B|X = x′, F = f ]
=

Pr[X=x|B,π,N,F=f ]
Pr[X=x′|B,π,N,F=f ]

Pr[X=x|π,N,F=f ]
Pr[X=x′|π,N,F=f ]

≤ eε, (2)

where the numerator of the right-hand-side is the posterior odds of the confiden-

tial database being x versus x′ after B is released, and the denominator is the

prior odds, i.e., the state of knowledge about x versus x′ before B is released. As

we noted in the introduction, this is precisely the Duncan and Lambert (1986) for-

malization of Dalenius (1977), although Duncan and Lambert’s procedure is not

based directly on the posterior odds ratio.

It should now be clear why we characterize differential privacy as worst-case

privacy protection: it bounds the posterior odds ratio for inferential disclosure

by eε over all possible publication outputs, B, considering every member of the

population as potentially excluded from the database, Nx. It should also be clear

why Dalenius’ statement that “[i]f the release of the statistics S makes it possible

to determine the value of [the confidential data item] more accurately than is pos-

sible without access to S, a disclosure has taken place...” (Dalenius 1977, p. 433)

is impossible to prevent. In the language of cryptography, the trusted data cura-

tor must leak some information about the confidential data because the release of

public-use statistics that fully encrypt those data (ε = 0) would be worthless. In
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the language of economics, some risk of privacy breach is the marginal social cost

of releasing any useful statistical information from the confidential database. And

in the language of statistical disclosure limitation, the R − U confidentiality map

must go through the origin–if there is no risk of privacy breach, there can also be

no utility from the public-use statistics.

Accuracy

We can now define our measure of accuracy. The mechanism receives a sequence

of normalized linear queries, f1, f2, . . . , fk from F , and returns, in real time, an-

swers, a1 = M (x, (f1)), a2 = M (x, (f1, f2)), . . ., ak = M (x, (f1, . . . , fk)). These

answers depend on the input database, the content of the query response, and the

randomization induced by the query release mechanism.

Definition 3 ((α, β)-accuracy) A query release mechanismM satisfies (α, β)-accuracy

for query sequence {f1, f2, . . . , fk} ∈ Fk, 0 < α ≤ 1, and 0 < β ≤ 1, if

min
1≤i≤k

{Pr [|ai − fi(x)| ≤ α]} ≥ 1− β.

This definition guarantees that the error in the answer provided by the mech-

anism is bounded above by α with probability (1 − β) for the entire sequence of

k queries. The probabilities in the definition of (α, β)-accuracy are induced by the

query release mechanism.

4 The Suboptimality of Private Provision

Using the differential privacy framework, we explicitly illustrate the potential for

suboptimal private provision of public statistical data by adapting the very inno-
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vative model of Ghosh and Roth (2011). Ghosh and Roth (GR, hereafter) show that

differential privacy can be priced as a commodity using a formal auction model.

They prove the existence of a mechanism that yields the lowest-cost method for

answering a database query with (ε, 0)-differential privacy and (α, β)-accuracy.7

Their model takes the desired query accuracy as exogenous. The producer of

the statistic purchases data-use rights from individuals whose data are already in

the population database for the purpose of calculating a single statistic–the an-

swer to one database counting query–that will then be published in a scientific

paper. Funds for the purchase of the data-use rights come from a grant held by

the scientist. GR assume that the statistical release is the private good of the pur-

chaser of the data-use rights.

In this section, we make the accuracy of the statistic computed via the GR

mechanism a public good whose demand is endogenous to our model. We show

that private provision results in a suboptimally low level of accuracy and too little

privacy loss. That is, we show that allowing the quality of the scientific research

modeled in GR to matter to the population being studied results in an external

benefit from the data publication that their model does not capture.

To model the demand for accuracy, we assume that the published statistical

data deliver utility to the consumers from whom the rights to use the confidential

inputs were purchased. The purchase of data-use rights takes the form of a pay-

ment to all consumers who agree to sell their data-use rights when the publication

mechanism delivers (ε, 0)-differential privacy. The value of the published statisti-

cal data to all consumers, whether they sell their data-use rights or not, depends

upon the accuracy of those data. Furthermore, this accuracy is the public good–it

summarizes the quality of the information that any consumer may access and use

7They prove their results for β = 1/3, but note that generalizing this is straightfoward. See
Dwork and Roth (2014, pp. 207-213) for this generalization.
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without reducing its accuracy for some other consumer (it is non-rival), and no

consumer can block another consumer’s use (it is non-excludable). In plain En-

glish, the other scientists and general readers of the papers published in the GR

world learn something too. They value what they learn. And they understand

that what they learn is more useful if it is more accurate.

Our argument for suboptimal provision rests on two observations. First, the

mechanism proposed by GR remains a minimum cost mechanism in our setting.

Second, even if privacy loss were a partially excludable non-rival public good,

accuracy would still be under-provided in the private market. These results follow

from considering the use of the VCG mechanism by a private competitive data

quality supplier for the procurement of privacy protection by a profit-maximizing

data curator acting as a price-discriminating monopsonist when buying data-use

rights.8

Suboptimality of private provision of data accuracy is caused by the external

benefit of data accuracy to all consumers that is not captured in the GR model. We

formally model the demand for data accuracy. The demand for privacy protection,

on the other hand, is derived from the private data publisher’s cost-minimization

problem. In the competitive equilibrium for privately-provided data quality, a

supplier using the VCG mechanism buys just enough privacy-loss rights to sell

the data quality to the consumer with the highest data-quality valuation. All other

8The VCG mechanism implies a single price for each data-use right purchased. In theory, if
the provider had access to a Lindahl mechanism (Mas-Colell et al. 1995), it could perfectly price
discriminate when compensating consumers for their loss of privacy when procuring data-use
rights. As long as property rights over privacy exposure are well-defined clear, the Lindahl pri-
vate producer would internalize the full social cost of the required privacy reduction, but not the
social benefit of increased data accuracy to the free-riding consumers who did not pay. In results
available from the authors, we show that even in the Lindahl case data quality is under-produced
compared to the social optimum and privacy protection is over-produced; i.e., there is too little
privacy loss. Since the Lindahl mechanism is based on the unrealistic assumption that consumers’
heterogeneous preferences for privacy are common knowledge, we do not focus on that case here.
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consumers use the published data for free.

4.1 Model Setup

Following Ghosh and Roth (2011), each of the N private individuals possesses a

single bit of information, bi, that is already stored in a database maintained by a

trusted curator.9 For example, as in our first empirical application, this informa-

tion could be the response to a single query about income of the form bi = 1 if

yi > y∗ and bi = 0 otherwise. Individuals each consume one unit of the published

statistic, which has information quality I defined in terms of (α, β)-accuracy, that

is I = (1 − α). Since I is a public good, all consumers enjoy the benefits of I ,

but each consumer is charged the market price pI , to be determined within the

model, for her “share” of I , which we denote Ii, and the balance of the public

good, which we denote I˜i is paid for by the other consumers. Thus, I = Ii + I˜i

for all consumers.

The preferences of consumer i are given by the indirect utility function

vi
(
yi, εi, Ii, I

˜i
)

= ln yi + pεεi − γiεi + ηi
(
Ii + I˜i

)
− pIIi. (3)

Equation (3) implies that preferences are quasilinear in data quality, I , privacy

loss, εi, and log income, ln yi.10 The term pεεi represents the total payment an indi-

9Trusted curator can have a variety of meanings. We mean that the database is held by an en-
tity, governmental or private, whose legal authority to hold the data is not challenged and whose
physical data security is adequate to prevent privacy breaches due to theft of the confidential data
themselves. We do not model how the trusted curator got possession of the data, but we do restrict
all publications based on these data to use statistics produced by a query release mechanism that
meets the same privacy and confidentiality constraints. Therefore, no data user has privileged ac-
cess for any query. These requirements closely mirror the statutory requirements of U.S. statistical
agencies.

10In this section, we keep the description of preferences for data accuracy and privacy protection
as close as possible to the original Ghosh and Roth specification. They allow for the possibility
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vidual receives if her bit is used in an (εi, 0)-differentially private mechanism. pε

is the common price per unit of privacy, also to be determined by the model. The

individual’s marginal preferences for data accuracy (a “good”) and privacy loss

(a “bad,” really an input here), (γi, ηi) > 0, are not known to the data provider,

but their population distributions are public information. Therefore, the mecha-

nism for procuring privacy has to be individually rational and dominant-strategy

truthful.

We do not include any explicit interaction between the publication of statisti-

cal data and the market for private goods. This assumption is not without conse-

quence, and we make it to facilitate exposition of our key point, which is that data

quality may be under-provided given its public-good properties. Violations of

privacy might affect the goods market through targeted advertising and price dis-

crimination as noted in Section 1. Accuracy of public statistics may also spill over

to the goods market in important ways, in part by making firms more efficient,

and thus able to produce and sell goods more cheaply. We reserve consideration

of these topics for future work.

In what follows we present the GR results using our notation and definitions.

See Appendix A.2 for a complete summary of the translation from their notation

and definitions to ours.

that algorithms exist that can provide differential privacy protection that varies with i; hence εi
appears in equation (3). They subsequently prove that εi = ε for ∀i in their Theorem 3.3. Income
and accuracy are added to the Ghosh and Roth utility function because they are required for the
arguments in this section. In Section 5 we develop a more complete model of the demand for
accurate public-use statistics that includes interdependent preferences.
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4.2 Cost of Producing Data Quality

A supplier of statistical information wants to produce an (α, β)-accurate estimate

produces ŝ of the population statistic

s =
1

N

N∑
i=1

bi (4)

i.e., a normalized query estimating the proportion of individuals with the property

encoded in bi. Theorems 3.1 and 3.3 in GR prove that to produce

ŝ =
1

N

[
H∑
i=1

bi +
αN

2

]
+ Lap

(
1

ε

)
(5)

with (α, 1/3)-accuracy requires εi = ε = 1/2+ln 3
αN

for H = N − αN
1/2+ln 3

. In equation

(5), the term Lap (σ) represents a draw from the Laplace distribution with mean 0

and scale parameter σ.

GR prove that purchasing the data-use rights from the H least privacy-loving

members of the population; i.e., those with the smallest γi, is the minimum-cost,

envy-free implementation mechanism. They provide two mechanisms for imple-

menting their VCG auction. We rely on their mechanism MinCostAuction and the

properties they establish in Proposition 4.5. See Appendix A.2

We now derive the producer’s problem of providing the statistic for a given

level of data quality, which we denote by I = (1 − α). If pε is the payment per

unit of privacy, the total cost of production is c(I) = pεHε, where the right-hand

side terms can be defined in terms of I as follows. Using the arguments above,

the producer must purchase from H(I) consumers the right to use their data to
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compute ŝ. Then,

H(I) = N − (1− I)N

1/2 + ln 3
. (6)

Under the VCG mechanism, the price of privacy loss must be pε = Q
(
H(I)
N

)
,

whereQ is the quantile function with respect to the population distribution of pri-

vacy preferences, Fγ . pε is the lowest price at which the fraction H(I)
N

of consumers

do better by selling the right to use their bit, bi, with ε (I) units of differential

privacy. H(I) is increasing in I . The total cost of producing I is

CV CG(I) = Q

(
H(I)

N

)
H(I)ε(I), (7)

where the production technology derived by GR implies

ε(I) =
1/2 + ln 3

(1− I)N
. (8)

4.3 Private, Competitive Supply of Data Quality

Suppose a private profit-maximizing, price-taking, firm sells ŝwith accuracy (α, 1/3),

that is, with data quality I = (1− α) at price pI . Then, profits P (I) are

P (I) = pII − CV CG(I).

If it sells at all, it will produce I to satisfy the first-order condition P ′
(
IV CG

)
= 0

implying

pI = Q

(
H(I)

N

)
H(I)ε′(I) +

[
Q

(
H(I)

N

)
+Q′

(
H(I)

N

)(
H(I)

N

)]
H ′(I)ε(I) (9)
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where the solution is evaluated at IV CG.11 The price of data quality is equal to

the marginal cost of increasing the amount of privacy protection–data-use rights–

that must be purchased. There are two terms. The first term is the increment to

marginal cost from increasing the number of people from whom data-use rights

with privacy protection ε must be purchased. The second term is the increment to

marginal cost from increasing the amount each privacy-right seller must be paid

because ε has been marginally increased thus reducing privacy protection for all.

As long as the cost function is strictly increasing and convex, the existence and

uniqueness of a solution is guaranteed.

4.4 The Competitive Market for Data Quality When It Is a Public

Good

At market price pI , consumer i’s willingness to pay for data quality will be given

by solving

max
Ii≥0

ηi
(
I˜i + Ii

)
− pIIi (10)

where I˜i is the amount of data quality provided from the payments by all other

consumers, as noted above. Consumer i’s willingness to pay is non-negative if,

and only if, ηi ≥ pI ; that is, if the marginal utility from increasing I exceeds the

price. If there exists at least one consumer for whom ηi ≥ pI , then the solution

to equation (9) is attained by IV CG > 0. We next show that there is only one such

11The second order condition is P ′′
(
IV CG

)
< 0, or d2CV CG(I)

dI2 > 0. The only term in the second

derivative of CV CG (I) that is not unambiguously positive is H(I)H′(I)2ε(I)
N2 Q′′

(
H(I)
N

)
. We assume

that this term is dominated by the other, always postivie, terms in the second derivative. Sufficient
conditions are that Q () is the quantile function from the lognormal distribution (as we assume in
Section 5) or the quantile function from a finite mixture of normals, and that H(I)

N is sufficiently
large; e.g., large enough so that if Q () is the quantile function from the lnN

(
µ, σ2

)
distribution,

Q∗′′
(

H(I)
N

)
+ σ2Q∗′

(
H(I)
N

)2
≥ 0, where Q∗ () is the standard normal quantile function.
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consumer.

It is a straightforward to verify that the consumers are playing a classic free-

rider game (Mas-Colell et al. 1995, pp. 361-363) across N agents. In the compet-

itive equilibrium, the only person willing to pay for the public good is the one

with the maximum value of ηi. All others will purchase zero data quality but

still consume the data quality purchased by this lone consumer. Specifically, the

equilibrium price and data quality will satisfy

pI = η̄ =
dCV CG

(
IV CG

)
dI

,

where η̄ is the maximum value of ηi in the population–the taste for accuracy of

the person who desires it the most. However, the Pareto optimal consumption of

data quality, I0, solves
N∑
i=1

ηi =
dCV CG (I0)

dI
. (11)

Marginal cost is positive,
dCV CG(I0)

dI
> 0, and

∑N
i=1 ηi ≥ η̄; therefore, data quality

will be under-provided by a competitive supplier when data quality is a pub-

lic good as long as marginal cost is increasing, which we prove below. More

succinctly, IV CG ≤ I0. Therefore, privacy protection must be over-provided,

εV CG ≤ ε0, by equation (8).12

For readers familiar with the data privacy literature, we note that the statement

that technology is given by equations (7) and (8) means that the data custodian

allows the producer to purchase data-use rights with accompanying privacy loss

12The reader is reminded that a smaller ε implies more privacy protection. It is also worth
commenting that in the GR formulation the single consumer with positive willingness to pay is the
entity running the VCG auction. That person is buying data-use rights from the other consumers,
computing the statistic for publication, then releasing the statististic so that all other consumers
may use it. That is why we have modeled this as a public good. And it is fully consistent with
GR’s scientist seeking data for a grant-supported publication.
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of ε = 1/2+ln 3
(1−I)N from H (I) individuals for the sole purpose of computing ŝ via

the query response mechanism in equation (5) that is
(

1/2+ln 3
(1−I)N , 0

)
-differentially

private and achieves (1 − I, 1
3
)-accuracy, which is exactly what Ghosh and Roth

prove.

4.5 Proof of Suboptimality

Theorem 1 If preferences are given by equation (3), the query response mecha-

nism satisfies equation (8) for (ε, 0)-differential privacy with
(
1− I, 1

3

)
-accuracy,

cost functions satisfy (7) for the VCG mechanism, the population distribution of

γ is given by Fγ (bounded, absolutely continuous, everywhere differentiable, and

with quantile function Q satisfying the conditions noted in Section 4.3), the pop-

ulation distribution of η has bounded support on [0, η̄], and the population in the

database is represented as a continuum with measure function H (absolutely con-

tinuous, everywhere differentiable, and with total measure N ) then IV CG ≤ I0,

where I0 is the Pareto optimal level of I solving equation (11), and IV CG is the

privately-provided level when using the VCG procurement mechanism.

Proof. The proof appears in Appendix A.1.

5 The Optimal Provision of Accuracy and Privacy

Having shown that both data quality and privacy loss have public-good proper-

ties when modeled using private supplier markets, we now formalize the problem

of choosing their optimal levels. We model the publication of statistics by a na-

tional agency from a confidential database for which it is the trusted custodian.

The agency’s publication method yields a technological frontier that describe the

rate at which privacy must be sacrificed to increase accuracy of the published
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statistics. The optimal choice along this frontier depends on the willingness of

individuals to pay for increased accuracy with reduced privacy protection. We

invoke the classic public goods model of Samuelson (1954) as explicated in Mas-

Colell et al. (1995, pp. 359-361) to solve for the Pareto optimal quantities of each

public good.

Our model assumes the data have already been collected, and we do not model

the monetary costs of collection. By deliberately abstracting from the public-

finance problem, we focus on the costs that arise from the disutility of foregone

privacy. Furthermore, in many settings, the costs of data collection are indepen-

dent of data publication. For example, the U.S. government is constitutionally

required to undertake the Decennial Census of Population. The data, having

been collected, is a resource to be allocated toward producing population statis-

tics. Similarly, administrative data are collected in the process of managing public

programs. Our analysis describes how the information embedded in the collected

data should be optimally allocated between privacy protection and production

of accurate statistics. The social cost of data quality is measured in terms of the

privacy loss when the agency publishes data, not when it collects those data.

5.1 Modeling Production Possibilities

We model a data custodian tasked with releasing public statistics calculated from

a confidential database, D. The database contains a measurement, xi, from each

member of a population of size N . We follow the formal privacy literature in

assuming xi is a categorical, possibly ordinal, variable drawn from a domain c〈〉.

As in that literature, we observe this is without loss of generality since in practice,

the set of acceptable values for continuous data is always finite. With some abuse

of notation, we let x denote the histogram representation of D, so ‖x‖1 = N .
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The custodian will publish the results of a set of linear queries, which gener-

alizes the common practice of publishing contingency tables. To do so, the custo-

dian operates a query release mechanism that is (ε, δ)-differentially private. Our

goal is to determine where the custodian should set ε to optimally trade off pri-

vacy protection and accuracy of the published statistics. In what follows, we as-

sume the custodian operates the Multiplicative Weights Exponential Mechanism

(MWEM), the details of which we describe shortly. However, our analysis is gen-

erally valid for all differentially private mechanisms that yield a convex relation-

ship between privacy loss and accuracy.13

5.1.1 The Multiplicative Weights Exponential Mechanism

The MWEM mechanism was introduced by Hardt et al. (2012). To operate the

mechanism, the custodian chooses a subset,Q, of feasible normalized linear queries

f ∈ F to publish. The custodian also sets the privacy parameters (ε and, if possi-

ble, δ).

We summarize here the basic features of MWEM needed to understand our

application. A more complete description appears in Appendix A.4. To under-

stand MWEM, it is useful to first describe a simpler, but less efficient, algorithm:

the Laplace Mechanism. One can think of the parameter ε as representing a fixed

privacy budget to be allocated across answers to various queries. The simplest

approach is to calculate the answer to each query using the true data. The cus-

todian can guarantee ε differential privacy by publishing the true answer plus

13One such mechanism is the Private Multiplicative Weights (PMW) mechanism, which is very
similar to MWEM, but for a setting in which users address queries to the underlying database
interactively. The theoretical accuracy guarantee of PMW is qualitatively similar to MWEM. We
prefer MWEM for this analysis because the interactive setting envisioned by PMW is a less com-
mon form of data publication for public statistical agencies and also because, as far as we know,
there is no practical implementation of PMW.
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a random error drawn from the Laplace distribution with scale parameter |Q|
ε

.

This approach works due to the additive composibility of (ε, δ)-differential pri-

vacy composes (for a proof see Dwork and Roth (2014, pp. 49-51)). When the set

of queries is large, or the extent of privacy loss is low, the amount of noise added

by the Laplace mechanism is unacceptably large.

MWEM economizes on expenditure of the privacy budget relative to the Laplace

Mechanism as follows. The algorithm stores both the true data as well as synthetic

data with the same structure that is not derived from the confidential data except

according to the following procedure. For example, the synthetic data might be

initialized with a uniform distribution across cells. At each round, the algorithm

computes every query on the true data and the synthetic data. The query score

is the absolute value of their difference. The algorithm selects a query at random

with weight proportional to the query score, so that queries approximated poorly

by the synthetic data are at higher risk of selection. The algorithm applies Laplace

noise to the query applied to the true data, and then weights the entries in the syn-

thetic database to match the noisy query response. In MWEM, the privacy budget

is hence drawn down only for queries that are answered poorly. Upon comple-

tion, the custodian can publish answers to all queries, or the synthetic data, or

both.

The strengths of this approach are twofold. First, the approximation to the

true histogram minimizes error given the queries already answered. Second, the

algorithm only adds noise when the approximate (i.e., already public) answer is

sufficiently far from the truth. This conserves on the privacy loss and controls the

total error efficiently.
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5.1.2 The Feasible Trade-off between Privacy Loss and Accuracy

The MWEM algorithm delivers an increasing and convex relationship between

privacy loss and accuracy. That is, to increase accuracy, it is necessary to increase

privacy loss, and there are diminishing returns to increasing privacy loss in ob-

taining increased accuracy. MWEM therefore provides the basis for a well-defined

production possibilities frontier.

Theorem 2 Let D be a confidential database with rows that are elements from the

set χ with histogram x from population size ‖x‖1 = N . Let the set of all allow-

able normalized linear queries be Q ⊆ F with cardinality |Q|. Given ε > 0, the

MWEM mechanism can deliver public answers to all queries in Q for that satisfy

the following conditions:

1. Privacy: MWEM satisfies (ε, 0)-differential privacy;

2. Accuracy: MWEM satisfies (α, β)-accuracy, with

α =
K(|χ|, |Q|, N)

εb
. (12)

Furthermore,K is decreasing inN and increasing in |χ| and |Q|. For MWEM,

the parameter b = 1
3

Proof.

5.1.3 The Production Possibilities Frontier

We show here that the accuracy guarantee obtained in Theorem 2 has a direct

interpretation as a production possibilities frontier (PPF). The key accuracy pa-

rameter is α, which measures the worst-case deviation on a single query. Higher
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values of α correspond to lower accuracy. To relate our exposition to risk-return

analysis, we define information quality as I = (1 − α) and characterize the PPF

between it and differential privacy loss, ε, by a transformation function

G (ε, I) ≡ I −
[
1− K(|χ|, |Q|, N)

εb

]
(13)

where the functional form of K is given in the proof of Theorem 2. All feasible

pairs (ε, I) are contained in the transformation set

Y = {(ε, I) |ε > 0, 0 < I < 1 s.t. G(ε, I) ≤ 0} . (14)

The PPF is the boundary of the transformation function defined as

PPF (ε, I) = {(ε, I) |ε > 0, 0 < I < 1 s.t. G(ε, I) = 0} . (15)

Equation (15) specifies the maximum information quality that can be published

for a given value of privacy loss.

Solving for I as a function of ε, the data publication problem using the MWEM

query release mechanism produces the production possibilities frontier

I (ε; |χ|, |Q|, N) =

[
1− K(|χ|, |Q|, N)

εb

]
. (16)

The marginal social cost of increasing data accuracy I in terms of foregone

privacy protection ε–the marginal rate of transformation–is

MRT (ε, I) ≡ dI

dε
= −∂G/∂ε

∂G/∂I
=
bK(δ, β, |χ|, |Q|, N)

εb+1
, (17)

where the marginal rate of transformation is positive because privacy loss is a
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public bad. Application of the implicit function theorem yields the sign change in

the middle equality.14

Figure 1 illustrates the PPF for our application to publication of statistics on

the distribution of income, which we describe in detail in Section 6. We graph

The PPF described by equation (16) with ε on the horizontal axis and I on the

vertical axis. Because ε is a “bad” rather than a “good”, the PPF is similar to the

efficient risk-return frontier used in financial economics as well as the offer curve

used in hedonic wage theory. The PPF separates feasible (ε, I) pairs, which are on

and below the PPF, from infeasible pairs, which are above the PPF. The PPF also

exhibits a diminishing marginal rate of transformation: it is increasingly costly, in

terms of foregone privacy, to increase information quality.

We treat the parameters (|χ|, |Q|, N) that determine K as outside the choice

problem facing the data custodian. Doing so is not without consequence, as these

parameters affect the location of the PPF. We think of them as determining the size

of the “information budget” at the custodian’s disposal. Our model envisions a

custodian in possession of fixed database and a charge to publish a fixed set of

queries (contingency tables). Given these constraints, the custodian must choose

the levels of privacy and accuracy which which to deliver the published statistics.

The PPF determines the set of feasible pairs given the information budget. How

to select the socially-optimal pair from this set is the problem we turn to next.

Before moving on, note that our framework could be extended to make the pa-

rameters governing the information budget endogenous. To obtain better privacy

for a fixed level of desired accuracy, the custodian could, for example, limit the set

14As the proof of Theorem 2 shows, the equation that defines the transformation set is contin-
uously differentiable with respect to both ε and I . This fact is not obvious from the text of Hardt
et al. (2012), which introduced MWEM. In their presentation the relevant accuracy bound is re-
ported using big-O notation. They did so for convenience; the accuracy bound is messy, but the
closed form is straightforward to derive. See Appendix A.4.
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of queries to publish. If we were to assume further data collection were possible,

increasing the size of the database, N , could also shift the PPF.

5.2 The Optimal Level of Privacy

Given the data publication technology described above, the data custodian must

ultimately choose a level of privacy protection, and with it, a guaranteed level of

accuracy in the published statistics. From the perspective of our model, this is

equivalent to choosing a target level of statistical accuracy then setting the mini-

mum feasible amount of privacy loss under the publication technology. In prac-

tice, the data custodian’s choice may depend on a host of legal, economic, and

political considerations. Our goal is to characterize the optimal level of privacy

protection. When information quality and privacy protection are public goods,

the solution is not obtained through market pricing. We therefore ask in this sub-

section what level of privacy a utilitarian social planner would choose to deliver.

As already discussed, the answer depends on the average willingness to pay for

data quality in terms of foregone privacy.

5.2.1 Preferences

We assume data are collected from all members of the population, and all mem-

bers of the population may use the published statistics. Every person also con-

sumes a set of pure private goods. Our formulation allows for arbitrary hetero-

geneity across individuals in preferences for privacy loss and the accuracy of pub-

lished statistics. In doing so, we allow for the empirically relevant possibility that

one group of people cares primarily about privacy, while getting little utility from

consuming the data, while another set cares primarily about data quality.
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The indirect utility function, vi, for each individual is

vi (yi, ε, I, x, p) = max
q
ui (q, ε, I, x) s.t. qTp ≤ yi (18)

where q is the bundle of L private goods chosen by individual i at prices p, which

are common to all individuals in the population. The direct utility function ui (q, I, ε, x),

also depends upon the privacy-loss public bad, ε, the data-accuracy public good,

I , and on the data collected from all other individuals, which we represent here by

the histogram vector, x. In our applications, x is data describing the distribution

of income or the distribution of a health indicator.

5.2.2 The Social Planner’s Problem

We adopt the utilitarian linear aggregation form of the social welfare function

SWF (ε, I, v, y, x, p) =
N∑
i=1

vi (yi, ε, I, x, p) (19)

where v and y are vectors of N indirect utilities and incomes, respectively. The

social planner’s problem is

max
ε,I

SWF (ε, I, v, y, x, p) (20)

subject to the set of production possibilities characterized by Equation (16).

Assuming the indirect utility functions are differentiable, the conditions that

characterize the welfare-maximizing levels of ε and I subject to the feasibility con-

straint are
∂G(ε0,I0)

∂ε
∂G(ε0,I0)

∂I

=
∂
∂ε

∑N
i=1 vi (yi, ε

0, I0, x, p)
∂
∂I

∑N
i=1 vi (yi, ε

0, I0, x, p)
(21)
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and PPF (ε0, I0). The left-hand side of equation (21) is the marginal rate of trans-

formation from the production possibilities frontier while the right-hand side is

the marginal rate of substitution between privacy loss and information quality.

Intuitively, it measures the willingness-to-pay for increased privacy in terms of

foregone data quality.

6 Applications

We conduct two empirical exercises to illustrate the normative content of our

model. Our goal is to show how these methods can provide guidance to data

providers about the optimal rate at which to trade off privacy loss for statistical

accuracy. We present results for two applications where privacy loss and data

accuracy are both highly salient: (1) publication of income distribution statistics;

(2) publication of relative health status statistics. We use data from the Ameri-

can Community Survey (ACS) to simulate publication of detailed statistics on the

income distribution and data from the National Health Interview Survey (NHIS)

to simulate publication of data on the distribution of body-mass index (BMI). In

each case, we characterize the PPF by specifying parameters the data custodian

will use with the MWEM algorithm, as described in Section 5.

To find the optimal levels of data quality and privacy loss, we specify a model

in which individual preferences depend on others’ outcomes. It is motivated by

models of interdependent preferences (Pollak 1976; Card et al. 2012; Akerlof 1997;

Alessie and Kapteyn 1991). For example, in our first application, individuals care

about the quality of income statistics because they want to know their relative

standing in the income distribution. The model yields a closed-form solution for

willingness-to-pay that depends on the distribution of preferences for data quality
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and privacy, along with income, and health status. In what follows, we first define

preferences in general terms and derive the solution to the social planner’s prob-

lem. We then characterize the optimal solution to the data publication problem

in each of our two applications, using data from opinion surveys to estimate the

willingness of the social planner to pay for decreased privacy loss with reduced

accuracy.

6.1 The Specification of Preferences

For clarity, we focus here on the publication of income statistics. Our applica-

tion to health statistics uses an identical specification up to relabeling. We assume

each individual cares about her position in the income distribution. We also as-

sume heterogeneity in individual tastes for privacy loss and data accuracy. A

specification of the indirect utility function that captures the required features is

v
(
yi, ε, I, y

˜i, p
)

= −
L∑
`=1

ξ` ln p` + ln yi (22)

−γi (1 + ln yi − E [ln yi]) ε

+ηi (1 + ln yi − E [ln yi]) I

where (γi, ηi) > 0 for all i = 1, . . . , N , ξ` > 0 for all ` = 1, . . . , L and
∑L

`=1 ξ` = 1.15

The term (ln yi − E [ln yi]) represents the deviation of individual i’s log income

from the population mean.16

15In equation (22) and what follows, expectation, variance, and covariance operators are with
respect to the joint distribution of ln yi, γi and ηi in the population of N individuals.

16 In Appendix A.3, we verify that the vector v of indirect utility functions is homogeneous
of degree zero in (p, y), strictly increasing in y, non-increasing in p, quasiconvex in (p, y), and
continuous in (p, y). Therefore, v

(
yi, I, ε, y

˜i, p
)

is a well-specified indirect utility function in this
economy with relative income entering every utility function with the same functional form pro-
vided equation (22) is quasiconcave in (ε, I), which is trivially true for equation (22), as long as
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Equation (22) is motivated by Akerlof (1997), and subsequent work on public

good provision with interdependent preferences (see Aronsson and Johansson-

Stenman (2008) and the references therein). If we assume I = 1 and ε = 0, then our

indirect utility function is consistent the prior literature, which assumes income

distribution is known by everyone with perfect accuracy and without disutility

from privacy loss.

Substitution of equation (22) into equation (21) yields

∂G(ε0,I0)
∂ε

∂G(ε0,I0)
∂I

=
∂
∂ε

∑N
i=1 vi

(
yi, ε

0, I0, y˜i, p
)

∂
∂I

∑N
i=1 vi (yi, ε

0, I0, y˜i, p)
(23)

bK(δ, β, |χ|, |Q|, N)

(ε0)b+1
=

∑N
i=1 γi (1 + ln yi − E [ln yi])∑N
i=1 ηi (1 + ln yi − E [ln yi])

(24)

=
E [γi] + Cov [γi, ln yi]

E [ηi] + Cov [ηi, ln yi]

Note that a sign change occurs on both sides of equation (24) because we are mod-

eling one public good, I , and one public bad, ε. The full solution is

I0 (.) = 1−
{

1

b
K(δ, β, |χ|, |Q|, N)1/b

E [γi] + Cov [γi, ln yi]

E [ηi] + Cov [ηi, ln yi]

}b/(b+1)

(25)

and

ε0 (.) =

{
bK(δ, β, |χ|, |Q|, N)

E [ηi] + Cov [ηi, ln yi]

E [γi] + Cov [γi, ln yi]

}1/(b+1)

. (26)

(γi, ηi) > 0 for all i, since it is linear in (ε, I). Hence, equation (19) is a well-specified social welfare
function, quasiconcave in (ε, I), and the social planner’s problem is well-specified since equation
(16) is quasiconcave in (ε, I).
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6.2 Example 1: Publication of Income Statistics

To illustrate our method as it applies to the publication of income statistics, we

first describe production possibilities applied to income data from the ACS, derive

the marginal rate of transformation, and then estimate willingness to pay from the

FSS POS. We then solve the social planner’s problem to derive the optimal level

of privacy loss and data quality.

6.2.1 Publication Technology

We assume the data custodian is in possession of a database with the exact in-

come for all eligible members of the U.S. population. To illustrate the feasibil-

ity of our approach, we construct a population-scale database of incomes from

the 5-year ACS files for 2010–2014. Specifically, we generate a database with

N = 197, 040, 596 records, which is the size of the 2012 population with reported

income according to the ACS. To generate the database, we use the Bayes boot-

strap to draw N records from the 2010–2014 files ACS using with probability pro-

portional to the sampling weights. The details of data preparation and analysis

appear in Appendix A.5 and the associated code archive.

To simulate publication of the income distribution, we group income into 797

evenly-spaced bins, which is the size of the data domain, |χ|. The bin sizes and

labels are non-private. The set of queries to be answered consists of all interval

queries; that is, all queries of the form “how many records fall between bin a and

bin b?”. There are |Q| = 318, 003 such queries. The custodian operates the MWEM

mechanism to publish statistics from this database.
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6.2.2 Measuring Preferences

To measure the marginal rate of substitution in the social planner’s problem, we

draw on data from the Federal Statistical System Public Opinion Survey (FSS

POS). Our goal is to empirically quantify the distribution of the indirect utility

function parameters.17

The FSS POS is a national public opinion survey conducted in conjunction with

Gallup daily tracking surveys. From it, we use the following questions:

• FS11, which records responses on a five-category Likert scale measuring

agreement with the following statement: “People can trust federal statistical

agencies to keep information about them confidential.”

• FS14, which records binary responses to the following question: “Would

you say that federal statistical agencies often invade peoples privacy, or gen-

erally respect peoples privacy?”

• FS7, which records responses on a five-category Likert the extent of agree-

ment with the following statement: “Policy makers need federal statistics to

make good decisions about things like federal funding.”

• Family income, recorded in five categories.

We use FS11 and FS14 as proxy measures of the latent preference for privacy

γi and FS7 as a proxy measure of the latent preference for accuracy ηi. We com-

pute the polychoric correlations between each preference measure and income:18

17 For more details of the the FSS POS see Childs et al. (2012) and Childs et al. (2015). See also
Appendix A.5.

18 For many respondents, income is missing, and the data exhibit moderate levels of non-
response on the opinion variables. The preceding estimates are based on a complete data analysis
in which the missing values are multiply imputed 500 times conditional on the observed data,
and we account for the imputation uncertainty by combining the within and between implicate
variance. The results are qualitatively equivalent if we instead drop the missing cases.
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• Based on FS7, we find Corr [γi, ln yi] = 0.082 (±0.003)

• Based on FS14, we find Corr [γi, ln yi] = 0.083 (±0.003)

• Based on FS11, we find Corr [ηi, ln yi] = 0.040 (±0.003)

To compute the MRS based on Equation (23), and using the estimated correla-

tions above, we need additional modeling assumptions. Specifically, we assume

log income and the latent preference parameters, η and γ are normally distributed,

and that η and γ have unit variances. The data are informative about Corr [γi, ln yi]

and Corr [ηi, ln yi]. To pin down the location, we assume E [γi] = E [ηi] = σln y. This

assumption puts variation in utility that arises from the direct valuation of pri-

vacy loss and data quality on the same scale as variation in utility that arises from

the interaction with relative income.19

Invoking these assumptions, we have

E [γi] + Cov [γi, ln yi]

E [ηi] + Cov [ηi, ln yi]
=

1 + Corr [γi, ln yi]

1 + Corr [ηi, ln yi]
(27)

Substituting the polychoric correlations obtained from the FSS POS data, we esti-

mate the MRS = 1.040. At the social optimum, a one-unit increment in privacy

loss must be compensated by a 1.040 unit increase in data accuracy.

6.2.3 Solution

Figure 1 illustrates the solution to the social planner’s problem when the statistical

agency operates the MWEM algorithm, as operationalized by Hardt et al. (2012).
19We recognize that our assumptions on E [γi] and E [ηi] are somewhat arbitrary. We could, for

example, also assume that individuals only care about ε and I through the relative income chan-
nel, in which case the terms involving E [γi] and E [ηi] would drop from the utility function. The
implied MRS would be considerably different with those modeling assumptions. These considera-
tions highlight the need for much better models and data on the demand for privacy and statistical
accuracy.
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Figure 1: Solution to the Social Planner’s Problem

The social welfare function is based on the indirect utility function in equation

(22). The solid line represents the production possibilities frontier under MWEM

given the parameterization based on ACS data. The dashed lines are contour plots

of the social welfare function (19) at representative non-optimal (SWF0) and opti-

mal (SWF1) attainable levels of social welfare. The expansion path is the straight

line that intersects the horizontal axis.

Evaluated at the point where the MRT = 1.040, find the optimal accuracy and

privacy are I0 = 0.862 and ε0 = 0.042. We can also evaluate the welfare cost of

choosing suboptimally low privacy loss at the expense of data accuracy. This is the

relevant scenario in the case of private provision since, as we showed in Section

5.2, the costs of privacy loss are internalized but the benefits of data accuracy
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are not. Choosing a point with ε = 0.021, which is equivalent to a 50 percent

decrease in privacy loss, the corresponding value of I on the PPF, I = 0.826, results

in an expected change in utility of −0.013 per person. This could be offset, on

average, with an income transfer of approximately 1.3 percent of national income

distributed evenly across the population.

6.2.4 Simulations

One may be curious about the practicality of such methods. The theoretical ac-

curacy guarantee says that the worst-case query is answered to within 0.174 of

it’s true value. This bound is informative, but allows a considerable amount of

noise. If the distribution of incomes were uniform, each entry would be on the

order 0.001 in the normalized histogram. Our analysis is based on the worst case

guarantee, which is the reliability of the method across all possible datasets and

realizations of the randomized mechanism. In practice, the MWEM algorithm can

outperform this worst-case bound, as shown by Hardt et al. (2012) and subse-

quently by Schmutte (2016).

Using the population data from the ACS, we run the MWEM algorithm 30

times using the optimal parameter configuration. The maximum error across all

queries, averaged across the 30 implementations, is 0.0014, which is on the same

order as the uniform histogram, and considerably lower than the worst-case guar-

antee. This indicates that, beyond offering a framework for reasoning about opti-

mal privacy protection, MWEM may be a practical method for publishing data; at

least in this relatively simple context. Finally, note that when we cut ε by half to

ε = 0.021, as in the policy experiment above, the average worst-case error doubles

to 0.002.
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6.3 Example 2: Publication of Health Status Statistics

Our analysis of the publication of health statistics parallels the preceding analysis

of income statistics. We use the same model for interdependent preferences, only

we assume individuals care about their relative health status rather than relative

income. This yields an expression for the social willingness to pay for reduced

privacy loss that depends on the correlation of health status with preferences for

privacy and accuracy. We estimate these quantities using data from the Cornell

National Social Survey (CNSS) and use them to compute the socially optimal lev-

els of privacy loss and data quality.

6.3.1 Publication Technology

We assume the data custodian is in possession of a database with the body-mass

index (BMI) for all members of the U.S. population. To illustrate the feasibility of

the mechanism, we construct a population-scale database of based on BMI mea-

sured from the 2015 National Health Interview Survey (NHIS). Specifically, we

generate a database with the distribution of BMI as collected in the NHIS of size

N = 242, 977, 154. This is the size of the population, as reported from the ACS

public-use tables, for all individuals age 18 and older not residing in group quar-

ters, which is the universe for which BMI is collected in NHIS as a random sample.

To generate database, we drawN BMI observations from the 2015 NHIS using the

Bayes bootstrap with probability proportional to their sampling weights. The de-

tails of data preparation and analysis appear in Appendix A.5 and the associated

code archive.

To simulate publication of the income distribution, we group BMI into |χ| =

800 evenly-spaced bins. The bin sizes and labels are non-private. The set of

queries to be answered consists of all interval queries; that is, all queries of the
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form “how many records fall between bin a and bin b?”. There are |Q| = 320, 400

such queries. The custodian operates the MWEM mechanism to publish statistics

from this database.

6.3.2 Measuring Preferences

Our model for preferences is identical to Equation 22 except we substitute the

latent health status, lnhi, for income ln yi in the terms involving ε and I . Making

the same distributional assumptions, it follows that we can estimate willingness

to pay by

WTP =
1 + Cov [γi, lnhi]

1 + Cov [ηi, lnhi]
. (28)

We use data from the Cornell National Social Survey (CNSS) from 2011, 2012,

and 2013. The CNSS is a nationally representative cross-sectional telephone sur-

vey of 1,000 adults each year. The survey collects basic household and individual

information, including income. In 2011, 2012, and 2013, the CNSS includes ques-

tions that elicit subjective health status along with attitudes toward the privacy of

personal health information and the value of accurate health statistics.20 We use

the following questions from the CNSS:

• JAq6, “In general, how would you rate your overall health?” measured as a

Likert scale with five categories;

• “If medical information could be shared electronically between the places

where a patient receives medical care, how do you think that would:”

1. JAq4@b, “. . . affect the privacy and security of medical information?”

20For the CNSS (Cornell Institute for Social and Economic Research and Survey Research Insti-
tute n.d.), see https://www.sri.cornell.edu/sri/cnss.cfm.
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measured as a Likert scale with five categories (proxy for privacy pref-

erences, γ).

2. JAq4@a, “. . . affect the quality of medical care?” measured as a Likert

scale with five categories (proxy for accuracy preferences, η).

Once again, we compute the polychoric correlations between the ordinal mea-

sures:

• Corr [γi, lnhi] = 0.015 (±0.021)

• Corr [ηi, lnhi] = 0.076 (±0.022)

Concern about the privacy of health status is negligibly correlated with health

status. Concern for the quality of medical information, is more positively cor-

related with health status. Making the relevant substitutions implies that at the

social optimum

MRT
(
ε0, I0

)
= 0.94,

which implies that a one-unit increase in privacy loss must be compensated with

a 0.94 increase in data quality. The estimated shadow price of reduced privacy

loss is, therefore, lower in the context of health data, lower than in the context

of publishing income statistics. That is, people are more willing to forgo privacy

for increased accuracy in the context of health information than in the context of

income.

6.3.3 Solution

Evaluated at the point where the MRT = 0.94, find the optimal accuracy and pri-

vacy are I0 = 0.872 and ε0 = 0.0451 Once again, we evaluate the welfare cost of

choosing suboptimally low privacy loss at the expense of data accuracy. Choosing
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Figure 2: The Social Planner’s Problem: Health Statistics

a point with ε = 0.226, which is equivalent to a 50 percent decrease in privacy loss,

the corresponding value of I on the PPF, I = 839, results in an expected change

in utility of −0.013 per person. This could be offset, with an income transfer of

approximately 1.3 percent of national income distributed evenly across the popu-

lation.

6.3.4 Simulations

Using the population data from the NHIS, we run the MWEM algorithm 30 times

using the optimal parameter configuration. The maximum error across all queries,

averaged across the 30 implementations, is 0.0015. When we cut ε by half to ε =

0.226, as in the policy experiment above, the average worst-case error rises to
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0.002. As was the case with income statistics, these simulations show that the

optimal choice for MWEM may yield a practical publication strategy in the context

of publishing an indicator of health status.

6.4 Discussion

Our analysis suggests how data providers can combine information about their

publication technology with data on the value of privacy and data quality to guide

decision-making. We note, however, that the preference data from the surveys are

not ideally suited to our applications. Obtaining our results using the available

data requires a number of ancillary assumptions. We make careful note of these

assumptions, and why they are needed. Progress on the questions identified by

this paper will require more and better information on individual and social pref-

erences for privacy and for data quality. We defer further speculation on these

measurement issues to the conclusion.

One might also suppose that a straightforward combination of the indirect util-

ity functions that generated demand for income distribution and health statistics

should lead to a model in which the statistical agency provides both types of data

to the population. Indeed, it is a rare government whose statistical agencies pub-

lish only one characteristic of the population. We do not develop that model here.

Instead, to illustrate a problematic consequence of this technology, we use re-

sults on the composability of (ε, 0)-differential privacy to reason about expanding

the set of published queries. Intuitively, differential privacy loss is additively com-

posable across independent data releases. 21

21This analysis can be conducted for the more general (ε, δ)-differential privacy. To address com-
posability formally we would need to define the concept of k−fold adaptive composition, with
appropriate parameterization to illustrate the consequences of composability for (ε, δ)-differential
privacy. These details are not necessary here, as we can use the more straightforward composabil-
ity results for (ε, 0)-differential privacy to make our point.
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If the statistical agency wished to publish both the income distribution data

with accuracy I0y = 0.904 and the health status statistics with accuracy I0h = 0.927,

which are the two optimal values derived above, then the level of privacy pro-

tection would be the sum of ε0y = 0.067 (income distribution) and ε0h = 0.043

(health statistics). We have added the subscripts y and h to distinguish the solu-

tions to the two problems. By the composability of (ε, 0)-differential privacy, the

actual privacy protection afforded by this publication strategy is εyh = 0.11. There

is no proof in our work (or anywhere else that we know) that the combination

I0y = 0.904 and I0h = 0.927 with εyh = 0.110 is optimal in any sense. All of the pro-

posed publications must be considered simultaneously in order to get the correct

optimum. This is feasible for the technology we have adopted, which can handle

the economies of scope implied by the composability of differential privacy, but

we have not done these calculations.

7 Conclusion

This paper provides the first comprehensive synthesis of the economics of privacy

with the statistical disclosure limitation and privacy-preserving data analysis liter-

atures. We develop a complete model of the technology associated with data pub-

lication constrained by privacy protection. Both the quality of the published data

and the level of the formal privacy protection are public goods. We solve the full

social planning problem with interdependent preferences, which are necessary in

order to generate demand for the output of government statistical agencies. The

PPF is directly derived from the most recent technology for (ε, δ)-differential pri-

vacy with (α, β)-accuracy. The statistical agency publishes using a Multiplicative

Weights Exponential Mechanism query release system.
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Consumers demand the statistics supplied by the government agency because

of their interdependent preferences. They want to know where they fit in the in-

come distribution and the distribution of relative health status. Thus, they are

better off when they have more accurate estimates of those distributions, which

can only be provided by inducing citizens to allow their data to be used in statis-

tical tabulations. All consumers/citizens are provided (ε, δ)-differential privacy

with the same values of the parameters due to worst-case protection afforded by

this publication technology. All consumers/citizens use the same (α, β)-accurate

statistical tabulations to assess their utility.

The solution to the social planning problem that optimally provides both pub-

lic goods–data accuracy and privacy protection–delivers more data accuracy, but

less privacy protection, than the VCG mechanism for private-provision of data.

The reason is that the VCG mechanism for procuring data-use rights ignores the

public-good nature of the statistics that are published after a citizen sells the right

to use her private data in those publications. The VCG mechanism also does not

account for the public good provided by the differential privacy protection, which

is extended to the entire population even if only some citizens would have sold

their data-use rights to the agency. The full social planner’s problem compels all

consumers to allow their data to be used in the published tabulations but guar-

antees privacy protect by restricting all publications to be based on the output

of an efficient query release mechanism–one that produces maximally accurate

statistics with the socially optimal differential privacy protection.

We compute the welfare loss associated with suboptimally providing too much

privacy protection and too little accuracy. For the income distribution statistics,

which are demanded when individuals care about their income relative to the

population distribution, decreasing accuracy by three log points (3 percent) rel-
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ative to the social optimum and commensurately increasing privacy protection

decreases total utility by 0.008 log points. For the relative health statistics, the

welfare loss from the same experiment is comparable. Both calculations show

that over-provision of privacy protection is harmful to the citizens when the de-

mand for the statistical products of the agencies is derived from interdependent

preferences.

A major barrier to research in this area is the lack of data on preferences for pri-

vacy and data accuracy. Self-reported attitudes toward privacy are increasingly

collected in opinion surveys, but more information is needed on the price peo-

ple attach to privacy loss; particularly as regards the sort of inferential disclosure

considered in this paper. Data on the individual and social benefits of popula-

tion statistics is even more scarce. New research is required, including carefully

designed controlled experiments that identify the components of utility, such as

relative income, that can only be assessed with statistical data on the relevant com-

parison population. Such experiments have already informed the role of relative

income in the study of subjective well-being (Luttmer 2005; Clark et al. 2008) and

the acquisition of private data for commercial use (Acquisti et al. 2013).

The relatively new concept of differential privacy allows a natural interpre-

tation of privacy protection as a commodity over which individuals might have

preferences. In many important contexts, privacy protection and data accuracy

are not purely private commodities. When this is true, the market allocations

might not be optimal. We show that it is feasible, at least in principle, to deter-

mine the optimal trade-off between privacy protection and data accuracy when

the public-good aspects are important. We also use another feature of differential

privacy, composability, to show that even though relatively accurate statistics can

be released for a single population characteristic such as income distribution or
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relative health status, each statistic requires its own budget. If an agency is re-

leasing data on many detailed characteristics of the population, a small privacy

budget will not allow any of the statistics to be released with accuracy compara-

ble to the accuracy shown in our applications. This is an important warning for

the Information Age.
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APPENDIX

A.1 Proofs Omitted from the Text

Proof of Theorem 1 Proof. Given a target accuracy α, corresponding to data qual-

ity level I = (1−α), the private producer must procure confidential data with ε(I)

units of privacy protection from a measure of H(I) individuals. Define

pV CGε = Q

(
H(I)

N

)
.

Note that pV CGε is the disutility of privacy loss for the marginal participant in the

VCG mechanism. The total cost of producing I = (1 − α) using the VCG mecha-

nism is equation (7):

CV CG(I) = Q

(
H(I)

N

)
H(I)ε(I).

Differentiating with respect to I

dCV CG(I)

dI
= Q

(
H(I)

N

)
H(I)ε′(I) +

[
Q

(
H(I)

N

)
+Q′

(
H(I)

N

)
H(I)

N

]
H ′(I)ε(I).

Comparison of the preceding marginal cost expressions establishes that 0 < dCL(I)
dI
≤

dCV CG(I)
dI

for all I , since N
∫ Q(H(I)

N )
0 Fγ(γ)dγ > 0, H ′(I) > 0, and Q′ () > 0 The result

in the theorem follows by using the private equilibrium equation for the market

price of I , which is pI in equation (3),

pI = η̄ =
dCV CG(IV CG)

dI
.
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Hence, IV CG ≤ I0, since
∑N

i=1 ηi ≥ η̄, and the conditions onQ that imply d2CV CG(I)
dI2

≥

0.

A.2 Translation of the Ghosh-Roth Model in Section 4 to Our

Notation

In this appendix we show that the results in our Section 4, based on the definitions

in the text using database histograms and normalized queries, are equivalent to

the results in Ghosh and Roth (2011). In what follows, definitions and theorems

tagged GR refer to the original Ghosh and Roth (GR, hereafter) paper. Untagged

definitions and theorems refer to our results in the text.

GR model a databaseD ∈ {0, 1}n where there is a single bit, bi, taking values in

{0, 1} for a population of individuals i = 1, . . . , n. In GR-Definition 2.1, they define

a query release mechanismA (D), a randomized algorithm that maps {0, 1}n → R,

as εi-differentially private if for all measurable subsets S of R and for any pair of

databases D and D(i) such that H
(
D,D(i)

)
= 1

Pr [A (D) ∈ S]

Pr [A (D(i)) ∈ S]
≤ eεi

where H
(
D,D(i)

)
is the Hamming distance between D and D(i).

Notice that this is not the standard definition of ε-differential privacy, which

they take from Dwork et al. (2006), because a “worst-case” extremum is not in-

cluded. The parameter εi is specific to individual i. The amount of privacy loss

algorithm A permits for individual i, whose bit bi is the one that is toggled in D(i),

is potentially different from the privacy loss allowed for individual j 6= i, whose

privacy loss may be εj > εi from the same algorithm. In this case individual j

could also achieve εj-differentially privacy if the parameter εi were substituted
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for εj . To refine this definition so that it also corresponds to an extremum with

respect to each individual, GR-Definition 2.1 adds the condition that algorithm A

is εi-minimally differentially private with respect to individual i if

εi = arg inf
ε

{
Pr [A (D) ∈ S]

Pr [A (D(i)) ∈ S]
≤ eε

}
,

which means that for individual i, the level of differential privacy afforded by

the algorithm A (D) is the smallest value of ε for which algorithm A achieves ε-

differential privacy for individual i. In GR εi-differentially private always means

εi-minimally differentially private.

GR-Fact 1 (stated without proof, but see Dwork and Roth (2014, p. 42-43 ) for

a proof) says that εi-minimal differential privacy composes. That is, if algorithm

A (D) is εi-minimally differentially private, T ⊂ {1, . . . , n} , and D,D(T ) ∈ {0, 1}n

with H
(
D,D(T )

)
= |T |, then

Pr [A (D) ∈ S]

Pr [A (D(T )) ∈ S]
≤ e{

∑
i∈T εi},

where D(T ) differs from D only on the indices in T .

In the population, the statistic of interest is an unnormalized query

s =
n∑
i=1

bi.

The εi-minimally differentially private algorithm A (D) delivers an output ŝ that

is a noisy estimate of s, where the noise is induced by randomness in the query re-

lease mechanism embedded inA. Each individual in the population when offered

a payment pi > 0 in exchange for the privacy loss εi > 0 computes an individual

privacy cost equal to υiεi, where υi > 0, where p ≡ (p1, . . . , pn) ∈ Rn
+ and υ ≡
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(υ1, . . . , υn) ∈ Rn
+.

GR define a mechanism M as a function that maps Rn
+ × {0, 1}

n → R × Rn
+

using an algorithm A (D) that is εi (υ)-minimally differentially private to deliver

a query response ŝ ∈ R and a vector of payments p (υ) ∈ Rn
+. GR-Definition 2.4

defines individually rational mechanisms. GR-Definition 2.5 defines dominant-

strategy truthful mechanisms. An individually rational, dominant-strategy truth-

ful mechanism M provides individual i with utility pi (υ) − υiεi (υ) ≥ 0 and

pi (υ) − υiεi (υ) ≥ pi
(
υ˜i, υ′i

)
− υiεi

(
υ˜i, υ′i

)
for all υ′i ∈ Rn

+, where υ˜i is the vec-

tor υ with element υi removed.

GR define
(
k, 1

3

)
-accuracy in GR-Definition 2.6 using the deviation |ŝ− s| from

the output ŝ produced by algorithm A (D) using mechanism M as

Pr [|ŝ− s| ≤ k] ≥
(

1− 1

3

)
where we have reversed the direction of the inequalities and taken the comple-

mentary probability to show that this is the unnormalized version of our Defi-

nition 3 for a query sequence of length 1. GR also define the normalized query

accuracy level as α, which is identical to our usage in Definition 3.

GR-Theorem 3.1 uses the GR definitions of εi-minimal differential privacy,(
k, 1

3

)
-accuracy, and GR-Fact 1 composition to establish that any differentially pri-

vate mechanism M that is
(
αn
4
, 1
3

)
-accurate must purchase privacy loss of at least

εi ≥ 1
αn

from at leastH ≥ (1− α)n individuals in the population. GR-Theorem 3.3

establishes the existence of a differentially private mechanism that is
(
1
2

+ ln 3
)
αn-

accurate and selects a set of individuals H ⊂ {1, . . . , n} with εi = 1
αn

for all i ∈ H

and |H| = (1− α)n.

In order to understand the implications of GR-Theorems 3.1 and 3.3 and our ar-

guments about the public-good properties of differential privacy, consider the ap-
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plication of GR-Definition 2.3 (Lap (σ) noise addition) to construct an ε-differentially

private response to the counting query based on GR-Theorem 3.3 with |H| =

(1− α)n and the indices ordered such that H = {1, . . . , |H|}. Assume, as we do

in Theorem 1 and as GR do in their proof of GR-Theorem 3.3, that n is sufficiently

large that we can ignore the difference between (1− α)n and ceil ((1− α)n). The

resulting answer from the query response mechanism is

ŝ =
1

N

[
H∑
i=1

bi +
αN

2

]
+ Lap

(
1

ε

)
,

which is equation (5) in the text. Because of GR-Theorem 3.3, we can use a com-

mon ε = 1
αn

in equation (5).

If this were not true, then we would have to consider query release mecha-

nisms that had different values of ε for each individual in the population and

therefore the value that enters equation (5) would be much more complicated. To

ensure that each individual in H received εi-minimally differential privacy, the

algorithm would have to use the smallest εi that the algorithm produced. In ad-

dition, the FairQuery and MinCostAuction algorithms described next would not

work because they depend upon being able to order the cost functions υiεi by υi,

which is not possible unless εi is a constant or υi and εi are perfectly positively cor-

related. Effectively, GR-Theorem 3.3 proves that achieving (α, β)-accuracy with ε-

differential privacy requires a mechanism in which everyone who sells a data-use

right gets the best protection (minimum εi over all i ∈ H) offered to anyone in the

analysis sample. If a modification of the algorithm results in a lower minimum εi,

everyone who opts into the new algorithm receives this improvement. In addi-

tion, we argue in the text that when such mechanisms are used by a government

agency they are also non-excludable because exclusion from the database violates
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equal protection provisions of the laws that govern these agencies.

Next, GR analyze algorithms that achieve O (an)-accuracy by purchasing ex-

actly 1
αn

units of privacy loss from exactly (1− α)n individuals. Their algorithms

FairQuery and MinCostAuction have the same basic structure:

• Sort the individuals in increasing order of their privacy cost, υ1 ≤ υ2 ≤ . . . ≤

υn.

• Find the cut-off value υk that either exhausts a budget constraint (FairQuery)

or meets an accuracy constraint (MinCostAuction).

• Assign the set H = {1, . . . , k} .

• Calculate the statistic ŝ using a differentially private algorithm that adds

Laplace noise with just enough dispersion to achieve the required differen-

tial privacy for the privacy loss purchased from the members of H .

• Pay all members of H the same amount, a function of υk+1; pay all others

nothing.

To complete the summary of GR, we note that GR-Theorem 4.1 establishes that

FairQuery is dominant-strategy truthful and individually rational. GR-Proposition

4.4 establishes that FairQuery maximizes accuracy for a given total privacy pur-

chase budget in the class of all dominant-strategy truthful, individually rational,

envy-free, fixed-purchase mechanisms. GR-Proposition 4.5 proves that their al-

gorithm MinCostAuction is a VCG mechanism that is dominant-strategy truth-

ful, individually rational and O (αn)-accurate. GR-Theorem 4.6 provides a lower

bound on the total cost of purchasing k units of privacy of kυk+1 GR-Theorem 5.1

establishes that for υ ∈ Rn
+, no individually rational mechanism can protect the

privacy of valuations υ with
(
k, 1

3

)
-accuracy for k < n

2
.

App. 6



In our application of GR, we use N as the total population. Our γi is identi-

cal to the GR υi. We define the query as a normalized query, which means that

query accuracy is defined in terms of α instead of k; hence, our implementation of

the VCG mechanism achieves
(
α, 1

3

)
-accuracy rather than

(
αN, 1

3

)
-accuracy. We

define the individual amount of privacy loss in the same manner as GR.

A.3 Properties of the Indirect Utility Function in Section 5

We specify the indirect utility function for a given consumer as

vi
(
yi, ε, I, y

˜i, p
)

= −
L∑
`=1

ξ` ln p`+ln yi−γi (1 + ln yi − E [ln yi]) ε+ηi (1 + ln yi − E [ln yi]) I

where (γi, ηi) > 0, ξ` > 0,
∑L

`=1 ξ` = 1 and E [ln yi] = 1
N

∑N
i=1 yi. To establish that

this is an indirect utility function for a rational preference relation, we prove that

the vector v is homogeneous of degree zero in (p, y), nonincreasing in p, strictly

increasing in y, quasiconvex in (p, y), and continuous in (p, y).

To prove that vi (yi, I, φ, y, p) is homogeneous of degree zero in (p, y), note that

for all λ > 0
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vi
(
λyi, ε, I, λy

˜i, λp
)

= −
L∑
`=1

ξ` ln (λp`) + ln (λyi)− γi (1 + ln (λyi)− E [lnλyi]) ε

+ηi (1 + ln (λyi)− E [lnλyi]) I

= −
L∑
`=1

ξ` lnλ−
L∑
`=1

ξ` ln p` + lnλ+ ln yi

−γi (1 + lnλ+ ln yi − E [lnλ]− E [ln yi]) ε

+ηi (1 + lnλ+ ln yi − E [lnλ]− E [ln yi]) I

= −
L∑
`=1

ξ` ln p` + ln yi − γi (1 + ln yi − E [ln yi]) ε

+ηi (1 + ln yi − E [ln yi]) I

= vi
(
yi, ε, I, y

˜i, p
)

(29)

since
∑
ξ` = 1 and lnλ = E [lnλ] . Since homogeneity of degree zero holds for

every vi, it holds for v.

For all λ > 1

vi
(
yi, ε, I, y

˜i, λp
)

= − lnλ−
L∑
`=1

ξ` ln p` + ln yi − γi (1 + ln yi − E [ln yi]) ε

+ηi (1 + ln yi − E [ln yi]) I

< −
L∑
`=1

ξ` ln p` + ln yi − γi (1 + ln yi − E [ln yi]) ε

+ηi (1 + ln yi − E [ln yi]) I

= vi
(
yi, ε, I, y

˜i, p
)

since λ > 1, ξ` > 0 for all ` and
∑
ξ` = 1. Therefore, v is nondecreasing in p.
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For all λ > 1

vi
(
λyi, ε, I, λy

˜i, p
)

= −
L∑
`=1

ξ` ln p` + ln (λyi)− γi (1 + ln (λyi)− E [lnλyi]) ε

+ηi (1 + ln (λyi)− E [lnλyi]) I

= −
L∑
`=1

ξ` ln p` + lnλ+ ln yi

−γi (lnλ+ ln yi − E [lnλ]− E [ln yi]) ε

+ηi (lnλ+ ln yi − E [lnλ]− E [ln yi]) I

> vi
(
yi, ε, I, y

˜i, p
)

since λ > 1 and lnλ = E [lnλ] . Therefore, v is strictly increasing in y.

To prove quasiconvexity in (p, y), consider (p, y) and (p′, y′) such that vi
(
yi, ε, I, y

˜i, p
)
≤

v̄ and vi
(
y′i, ε, I, y

˜i′, p′
)
≤ v̄ for all i. For any λ ∈ [0, 1] let (p′′, y′′) = λ (p, y) +

(1− λ) (p′, y′) . Then,

vi
(
y′′i , ε, I, y

˜i′′, p′′
)

= −
L∑
`=1

ξ` ln (λp` + (1− λ) p′`) + ln (λyi + (1− λ) y′i)

−γi (1 + ln (λyi + (1− λ) y′i)− E [ln (λyi + (1− λ) y′i)]) ε

+ηi (1 + ln (λyi + (1− λ) y′i)− E [ln (λyi + (1− λ) y′i)]) I

≤ v̄

by the concavity of ln (x).

Continuity in (p, y) follows from the continuity of ln (x). Therefore, v is a vector

of proper indirect utility functions.
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A.4 The Multiplicative Weights Exponential Mechanism Algo-

rithm

We provide a complete description of the MWEM mechanism based on the pre-

sentation in Hardt, Ligett and McSherry (2012), henceforth HLM.

To maintain consistency with the presentation in Sections 3 and 5, we present

the MWEM algorithm using an unnormalized histogram to represent both the

confidential and synthetic databases, and normalized linear queries operating on

both the confidential and synthetic databases. This represents a departure from

the original presentation by HLM, which they give using an unnormalized his-

togram and unnormalized queries. All symbols in the algorithm described below

have the same meaning as in our main text.

Algorithm Multiplicative Weights Exponential Mechanism

Input: An unnormalized histogram, x, from a database whose elements have car-

dinality |χ|; number of records in the original database, ||x||1 = N ; differential

privacy parameter ε > 0; a number, T , of iterations; a list of allowable nor-

malized linear queries Q ⊆ F with cardinality |Q|. Each normalized linear

query, f(x) ≡ 1
N
mTx where m ∈ [−1, 1]N .

1. Set the Laplace scale parameter: σ = 2T/ε.

2. Initialize the synthetic database: x̃0 = N
|χ|u|χ|, where u|χ| is the unit vector of

length |χ|.

3. Initialize a probability distribution over Q: p0 = 1
|Q|u|Q|.

4. for t← 1 to T

5. for each f ∈ Q

6. Define score s(x, f)← |N(f(x̃i−1)− f(x)|.

7. Define r(f)← exp(ε× s(x, f)/4T ).

8. end for
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9. Update: pt ← [r(f)]f∈Q.

10. Normalize: pt ← pt
||pt||1 .

11. Sample ft from Q given probability distribution dt over Q (This is the

exponential mechanism component).

12. Sample At from Lap(σ).

13. Compute the noisy answer to ft using the original database, ât ←

ft(x) + At. (This is the Laplace mechanism component).

14. Compute the answer to ft using the synthetic database, ãt ← ft(x̃[t−1]).

15. Compute the difference between the noisy and synthetic answers: dt ←

ât − ãt.

16. (update mechanism: expend some of the privacy budget to update the

synthetic data).

17. for i← 1 to |χ|

18. Update: yt[i]← x̃t−1[i]× exp(ft(i)× dt/2).

19. Normalize: x̃t[i]← N × yt[i]∑
i yt[i]

.

20. end for

21. end for

22. Output: x̃← Avgt<T x̃t

Here we highlight the key ideas as they relate directly to the notation we use

in our analysis. HLM establish that the MWEM algorithm is (ε, 0)-differentially

private (their Theorem 2.1). In each of the T iterations, both the exponential mech-

anism and the Laplace mechanism are parametrized by ε/2T . Composition there-

fore implies (ε, 0)-differential privacy. HLM state an error bound for MWEM in

their Theorem 2.2.Their reported bound for unnormalized queries is 2N
√

log |χ|
T

+

10T log |Q|
ε

. We simply rescale the error bound by database size to account for the

normalization. Converting to normalized queries gives 2
√

log |χ|
T

+ 10T log |Q|
Nε

. HLM
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note that the optimal number of iterations is the value of T that minimizes the

bound. The optimal value is easily found to be T =

(
εN
√

log |χ|
10 log |Q|

)2/3

.

In practice, the basic algorithm requires some adjustment to give acceptable

performance. None of these adjustments affect the privacy or accuarcy guaran-

tees. HLM suggest such adjustments in their Sections 2.3.1 and 2.3.2. In partic-

ular, within each iteration the update rule may be applied to all previously sam-

pled queries, multiple times, which can improve the fit of the synthetic database

to the full query set without additional privacy loss. We include these variations

in our own experiment. The exact implementation details are reported in our

code archive, which is permanently archived in the Digital Commons space of the

Cornell Labor Dynamics Institute http://digitalcommons.ilr.cornell.

edu/ldi/22/.

A.5 Data Sources

We use raw data from the the Cornell National Social Survey(CNSS). The input

data files sources are:

• American Community Survey (ACS)

• National Center for Health Statistics (NCHS)

• Federal Statistical System Public Opinion Survey

• Cornell National Social Survey: obtained from the CNSS integrated data ap-

plication http://www.ciser.cornell.edu/beta/cnss/ by selecting

all variables for all years. The original variable names include the “@” sym-

bol, which is not recognized in Stata. The analysis is conducted on an edited

version of the file also available in the public archive of this paper.
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A complete archive of the data and programs used to produce the empirical

results in this paper is available in the Digital Commons space of the Cornell Labor

Dynamics Institute http://digitalcommons.ilr.cornell.edu/ldi/22/.
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