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ABSTRACT 

 A model is described in which large numbers of simple agents organize 

into groups that empirically resemble U.S. firms. The agents work in team 

production environments, regularly adjust their work effort, and periodically 

seek better jobs or start new teams when it is in their self-interest. Nash 

equilibria of the team formation game exist but are unstable. Dynamics are 

studied using agent computing at full-scale with the U.S. private sector (120 

million agents). Stationary distributions of firm sizes, ages, growth rates, 

wages, job tenure and so on arise at the aggregate level despite perpetual 

adaptation at the agent level. Such agent adjustments occur for microeconomic 

reasons without the need for external shocks. 
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Human beings, viewed as behaving systems, are quite simple. The apparent 
complexity of our behavior over time is largely a reflection of the complexity of 
the environment in which we find ourselves. Herbert Simon (1996 [1969]: 53) 

1 Introduction 
While it is conventional, in a wide variety of economic models, to assume 

that the economy is in general equilibrium, there is, in fact, substantial dynamism 

in real economies. Consider the U.S. private sector: over the last decade the 

workforce has ranged from 115 to 120 million employees annually, with nearly 3 

million workers changing employers each month on average (Davis, Faberman 

and Haltiwanger 2006). Over this same period there were, each year, 5.7-6.0 

million firms with employees of which, on average, 100 thousand went out of 

business monthly while a comparable number started up (Fairlie 2012). Such high 

levels of turnover in the American economy—1 in 40 workers changing 

employers monthly, 1 in 60 firms terminating its operations—portrays a kind of 

perpetual economic flux in the U.S. How are we to interpret such persistent 

adjustments and reorganizations of productive activities? Conventionally, they 

are believed to represent the reallocation of human resources to more productive 

uses (Caves 1998). But do they generate actual productivity gains at the firm 

level? Do such fluxes partially result from previous changes, e.g., filling jobs 

previously opened? Do they cause new fluxes in the next period? Are they 

produced by exogenous shocks, whether aggregate or firm-specific (e.g., 

technological or productivity-related), or are they due to endogenous agent 

interactions and decisions? If we stipulate that the economy is in general 

equilibrium then there is no way to realize micro-dynamics except by the 

imposition of external shocks. Can microeconomic models endogenously produce 

the kinds of dynamics observed empirically when the incentives agents have to 

change jobs are fully represented? 

The main result of the research described here is a microeconomic model 

capable of producing, without exogenous shocks, firm and labor dynamics of the 

size and type experienced by the U.S. economy prior to the recent financial crisis. 

In addition to the nearly 3 million people who change jobs in the U.S. each 
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month, about half as many, some 1.5 million workers, separate from their 

employers monthly without new jobs, becoming unemployed, while a 

comparable number move off unemployment into new jobs; another 1.5 million 

people either leave the workforce for a spell or else begin a job after being out of 

the workforce. These flows sum to approximately 9 million labor market events 

per month at steady-state (Fallick and Fleischman 2004). Further, many of the 

vacancies created by such inter-firm flows are filled by intra-firm job changes, 

about which there are fewer data. All told, perhaps 12 million distinct job change 

events occur each month in the U.S., involving nearly 10% of the 120 million 

people in the private sector. Clearly, over the course of a year there is enormous 

turnover in the matching of people to jobs in the U.S. While conventional 

explanations for these large labor flows exist (e.g., Krusell, Mukoyama, 

Rogerson and Sahin 2011), here I provide a microeconomic explanation without 

the need for aggregate shocks. 

I also reproduce a variety of cross-sectional properties of U.S. businesses. 

Over the past decade there have appeared increasing amounts of micro-data on 

U.S. firms, including administratively comprehensive (tax record-based) data on 

firm sizes, ages, growth rates, labor productivity, job tenure, and wages. Extant 

theories place few restrictions on these data.1 Lucas (1978) derives Pareto-

distributed firm sizes from a Pareto distribution of managerial talent. Luttmer 

(2007, 2010) obtains Zipf-distributed firm sizes and exponential firm ages (2011) 

in a variety of general equilibrium settings, driven by exogenous shocks. Rossi-

Hansberg and Wright (2007) study establishment growth and exit rates arising in 

general equilibrium due to industry-specific productivity shocks. Elsby and 

Michaels (2013) and Arkolakis (2013) simulate heterogeneous firm growth rates 

due to productivity shocks. However, there are many more data on firm dynamics 

and labor flows to be explained. Here I develop a model that reproduces more 

                                                
1 A generation ago Simon noted the inability of the neoclassical theory of the firm to explain the empirical 
size distribution (Ijiri and Simon 1977: 7-11, 138-140, Simon 1997). Transaction cost (e.g., Williamson 
1985) and game theoretic explanations of the firm (e.g., Hart 1995, Zame 2007) make few empirical claims. 
Sutton (1998) bounds the extent of intra-industry concentration, constraining the shape of size distributions. 
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than three dozen features of the empirical data without recourse to exogenous 

shocks—such shocks are not necessary in a model with worker-level dynamics. 

 The model draws together threads from various theoretical literatures. It is 

written at the level of individual agents and incentive problems of the type 

studied in the principal-agent literature manifest themselves. The agents work in 

perpetually novel environments, so contracts are incomplete and transaction costs 

are implicit. Each firm is a coalition of agents making the theory of coalition 

formation relevant (Ray 2007). Agent decisions generate firm growth and decline 

in the spirit of evolutionary economics (Nelson and Winter 1982). 

Specifically, the model consists of a heterogeneous population of agents with 

preferences for income and leisure. Production takes place under increasing 

returns to scale, so agents who work together can produce more output per unit 

effort than by working alone. However, agents act non-cooperatively2: they select 

effort levels that improve their own welfare, and may migrate between firms or 

start-up new firms when it is advantageous to do so. Analytically, Nash equilibria 

within a firm can be unstable. Large firms are ultimately unstable because each 

agent’s compensation is imperfectly related to its effort level, making free-riding 

possible. Highly productive agents eventually leave large firms and such firms 

eventually decline. All firms have finite lives. The dynamics of firms perpetually 

forming, growing and perishing are studied. It will be shown that this non-

equilibrium regime provides greater welfare than equilibrium. 

 These dynamics mean it is analytically difficult to relate agent level behavior 

to the aggregate outcomes. Therefore, features that emerge at the firm population 

level are studied using agent-based computing (Holland and Miller 1991, Vriend 

1995, Axtell 2000, Tesfatsion 2002). In agent computing individual software 

objects represent people and have behavioral rules governing their interactions. 

Agent models are ‘spun’ forward in time and regularities emerge from the 

interactions (e.g., Grimm, et al. 2005). The shorthand for this is that macro-

structure “grows” from the bottom-up. No equations governing the aggregate 

                                                
2 For a cooperative game theoretic view of firms see Ichiishi (1993). 
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level are specified. Nor do agents have either complete information or correct 

models for how the economy will unfold. Instead, they glean data inductively 

from the environment and from their social networks, through direct interactions, 

and make imperfect forecasts of economic opportunities. (Arthur 1994). The 

macroscopic properties of the model emerge from the agent interactions. This 

methodology facilitates modeling agent heterogeneity (Kirman 1992), non-

equilibrium dynamics (Arthur 2002), local interactions (Kirman 1997), and 

bounded rationality (Arthur 1991, Kirman 1993). 

2 Dynamics of Team Production 
 Consider a group of agents A, |A| = n, engaged in team production, each agent 

contributing some amount of effort, generating team output.3 Specifically, agent i 

has endowment ωi > 0 and contributes effort level ei∈Α ∈ [0, ωi], to the group. The 

total effort of the group is then E ≡ Σi ∈A ei. The group produces output, O, as a 

function of E, according to O(E) = aE + bEβ, β > 1, without capital as in 

Hopenhayn (1992).4 For b > 0 there are increasing returns to effort.5 Increasing 

returns in production means that agents working together can produce more than 

they can as individuals.6 To see this, consider two agents having effort levels e1 

and e2, with β = 2. As individuals they produce total output O1 + O2 = a(e1 + e2) + 

b(e1
2 + e2

2), while working together they make a(e1 + e2) + b(e1 + e2)2. Clearly this 

latter quantity is at least as large as the former since (e1 + e2)2 ≥ e1
2 + e2

2. Agents 

earn according to a compensation rule. For now consider agents sharing total 

output equally: at the end of each period all output is sold for unit price and each 

agent receives an O/N share of the total output.7 Agents have Cobb-Douglas 

                                                
3 The model derives from Canning (1995), Huberman and Glance (1998) and Glance et al. (1997). 
4 While O(E) relates inputs to outputs, like a standard production function, E is not the choice of a single 
decision-maker, since it results from the actions of autonomous agents. Thus, O(E) cannot be made the sub-
ject of a math program, as in conventional production theory, yet does describe production possibilities. 
5 Increasing returns at the firm level goes back at least to Marshall (1920) and was the basis of theoretical 
controversies in the 1920s (Sraffa 1926, Young 1928). Recent work on increasing returns is reprinted in 
Arthur (1994) and Buchanan and Yoon (1994). Colander and Landreth (1999) give a history of the idea. 
6 There are many ways to motivate increasing returns, including ‘four hands problems’: two people working 
together are able to perform a task that neither could do alone, like carrying a piano up a flight of stairs. 
7 The model yields roughly constant total output, so in a competitive market the price of output would be 
nearly constant. Since there are no fixed costs, agent shares sum to total cost, which equals total revenue. 
The shares can be thought of as either uniform wages in pure competition or profit shares in a partnership. 
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preferences for income and leisure, parameterized by θ.8 All time not spent 

working is spent in leisure, so agent i’s utility can be written as a function of its 

effort, ei, and the effort of other agents, E~i ≡ E – ei as 

 . (1) 

2.1 Equilibrium of the Team Production Game 
 Consider the individual efforts of agents to be unobservable. From team 
output, O, each agent i determines E and, from its contribution to production, ei, 
can figure out E~i. Agent i then selects effort . 
For β = 2, in symbols, (θi, ωi, E~i) = 

 . (2) 

Note that e* does not depend on n but does depend on E~i—the effort put in by 

the other agents. To develop intuition for the general dependence of  on its 

parameters, figure 1 plots it for a = b = 1 and ωi = 10, as functions of E~ i and θi. 

 
Figure 1: Dependence of  on E~i and θ for a = 1, b = 1, ωi = 10 

Optimal effort decreases monotonically as 'other agent effort,' E~i, increases. For 

each θi there exists some E~i beyond which it is rational for agent i to put in no 

effort. For constant returns,  decreases linearly with E~i with slope θi – 1. 

Singleton Firms 

 The E~i = 0 solution of (2) corresponds to agents working alone in single 

                                                
8 Appendix A gives a more general model of preferences, yielding qualitatively identical results. 

Ui ei;θi ,ω i ,E~i ,n( ) = O ei;E~i( )
n

⎛
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ei
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ei
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max 0,
−a − 2b E~i −θiω i( ) + a2 + 4bθi
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agent firms. For this case the expression for the optimal effort level is 

 . (3) 

For θ = 0, e* = 0 while for θ = 1, e* = ω. 

Nash Equilibrium 
 Equilibrium in a team corresponds to each agent working with effort  from 

(2), using  in place of E~i such that . This leads to: 

Proposition 1: Nash equilibrium exists and is unique (Watts 2002). 

Proof: From the continuity of the RHSs of (2) and the convexity and compactness 

of the space of effort levels, a fixed point exists by the Brouwer theorem. Each 

fixed point is a Nash equilibrium, since once it is established no agent can make 

itself better off by working at some other effort level.        � 

Proposition 2: There exists a set of efforts that Pareto dominate Nash equilibrium 

(Hölmstrom 1982), a subset of which are Pareto optimal. These (a) involve larger 

effort levels than the Nash equilibrium, and (b) are not individually rational. 

Proof: To see (a) note that , since the 

first term on the RHS vanishes at the Nash equilibrium and 

!!!
!!~!

= !! ! + 2! !! + !~! !! − !! !!!!

!!! !! + !~! ! + ! !! + !~!
!!!! > 0. 

For (b), each agent’s utility is monotone increasing on the interval [0, ), and 

monotone decreasing on ( , ωi]. Therefore, . � 

 The effort region that Pareto-dominates Nash equilibrium is the space 

where individuals who are part of the firm can achieve higher welfare than they 

do either working alone or at Nash equilibrium within the team. 

Example 1: Graphical depiction of the solution space 2 two identical agents 

Consider two agents with θ = 0.5 and ω = 1. Solving (2) for e* with E~i = e* and 

a = b = 1 yields e* = 0.4215, corresponding to utility level 0.6704. Effort 

deviations by either agent alone are Pareto dominated by the Nash equilibrium, 

e.g., decreasing the first agent's effort to e1 = 0.4000, with e2 at the Nash level 

e* θ,ω( ) = −a + 2bθω + a2 + 4bθ 2ω a + bω( )
2b 1+θ( )

ei
*

    

� 

E~i
*

    

� 

E~i
* = e j

*
j≠ i∑

dUi ei
*;θi ,E~i

* ,n( ) = ∂Ui

∂ei
dei +

∂Ui

∂E~i
dE~i > 0

ei
*

ei
*

    

� 

∂U i ∂ei < 0∀ei > ei
*,E~i > E~i

*
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yields utility levels of 0.6700 and 0.6579, respectively. An effort increase to e1 = 

0.4400 with e2 unchanged produces utility levels of 0.6701 and 0.6811, 

respectively, a loss for the first agent while the second gains. If both agents 

decrease their effort from the Nash level their utilities fall, while joint increases 

in effort are welfare-improving. There exist symmetric Pareto optimal efforts of 

0.6080 and utility of 0.7267. However, efforts exceeding Nash levels are not 

individually rational—each agent gains by putting in less effort. Figure 2 plots 

iso-utility contours for these agents as a function of effort. 

 
Figure 2: Effort level space for two agents with θ = 0.5 and a = b = ω = 1; colored lines are iso-
utility contours, 'N' designates the Nash equilibrium, the heavy line from P-P are the Pareto 
optima, and the segment D-D represents the Pareto optima that dominate the Nash equilibrium 

The U-shaped lines are for the first agent, utility increasing upwards. The C-

shaped curves refer to the second agent, utility larger to the right. Point 'N' is the 

Nash equilibrium. The 'core' shaped region extending above and to the right of 

'N' is the set of efforts that Pareto-dominate Nash. The set of efforts from 'P' to 'P' 

are Pareto optimal, with the subset from ‘D’ to ‘D’ being Nash dominant. 

 For two agents with different θs the qualitative structure of the effort space 

shown in figure 1 is preserved, but the symmetry is lost. Increasing returns 

insures the existence of effort levels that Pareto-dominate the Nash equilibrium. 

For more than two agents the Nash and Pareto efforts continue to be distinct. 
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Example 2: Nash equilibrium in a team with free agent entry and exit 

 Four agents having θs of {0.6, 0.7, 0.8, 0.9} work together with a = b = ωi = 

1. Equilibrium, from (2), has agents working with efforts {0.15, 0.45, 0.68, 

0.86}, respectively, producing 6.74 units of output. The corresponding utilities 

are {1.28, 1.20, 1.21, 1.32}. If these agents worked alone they would, by (3), put 

in efforts {0.68, 0.77, 0.85, 0.93}, generating outputs of {1.14, 1.36, 1.58, 1.80} 

and total output of 6.07. Their utilities would be {0.69, 0.80, 0.98, 1.30}. 

Working together they put in less effort and receive greater reward. This is the 

essence of team production. Now say a θ = 0.75 agent joins the team. The four 

original members adjust their effort to {0.05, 0.39, 0.64, 0.84}—i.e., all work 

less—while total output rises to 8.41. Their utilities increase to {1.34, 1.24, 1.23, 

1.33}. The new agent works with effort 0.52, receiving utility of 1.23, above its 

singleton utility of 0.80. If another agent having θ  = 0.75 joins the new 

equilibrium efforts of the original group members are {0.00, 0.33, 0.61, 0.83}, 

while the two newest agents contribute 0.48. The total output rises to 10.09 with 

utilities {1.37, 1.28, 1.26, 1.34} for the original agents and 1.26 for each of the 

twins. Overall, even though the new agent induces free riding, the net effect is a 

Pareto improvement. Next, an agent with θ = 0.55 (or less) joins. Such an agent 

will free ride and not affect the effort or output levels, so efforts of the extant 

group members will not change. However, since output must be shared with one 

additional agent, all utilities fall. For the 4 originals these become {1.25, 1.15, 

1.11, 1.17}. For the twins their utility falls to 1.12 and that of the θ = 0.9 agent is 

now below what it can get working alone (1.17 vs 1.30). Since agents may exit 

the group freely, it is rational for this agent to do so, causing further adjustment: 

the three original agents work with efforts {0.10, 0.42, 0.66}, while the twins 

adds 0.55 and the newest agent free rides. Output is 7.52, yielding utility of 

{1.10, 0.99, 0.96} for the original three, 0.97 for the twins, and 1.13 for the free 

rider. Unfortunately for the group, the θ = 0.8 agent now can do better by 

working alone—utility of 0.98 versus 0.96, inducing further adjustments: the 

original two work with efforts 0.21 and 0.49, respectively, the twins put in effort 
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of 0.61, and the θ = 0.55 agent rises out of free-riding to work at the 0.04 level; 

output drops to 5.80. The utilities of the originals are now 0.99 and 0.90, 0.88 for 

the twins, and 1.07 for the newest agent. Now the θ = 0.75 agents are indifferent 

to staying or starting new singleton teams. 

Homogeneous Teams 

 Consider a team composed of agents of the same type (identical θ  and ω). In 

a homogeneous group each agent works with the same effort in equilibrium, 

determined from (2) by substituting (n-1)  for E~i, and solving for e*, yielding: 

. (4) 

These efforts are shown in figure 3a as a function of θ with a = b = ω = 1 and 

various n. Figure 2b plots the utilities for θ  ∈ {0.5, 0.6, 0.7, 0.8, 0.9} versus n. 

 
Figure 3: Optimal effort (a) and utility (b) in homogeneous teams, vs. θ and n, with a = b = ω = 1 

Note that each curve in figure 3b is single-peaked, so there is an optimal team 

size for every θ. This size is shown in figure 4a for two values of ω. 

 
Figure 4: Optimal size (a) and utility (b) in homogeneous teams versus θ; a = b = 1; ω = 1, 10 

Optimal team sizes rise quickly with θ  (note log scale). Utilities in teams are 

    

� 

ei
*

e* θ,ω ,n( ) =
2bθωn − a θ + n 1−θ( )( ) + 4bθ 2ωn a + bωn( ) + a2 θ + n 1−θ( )( )2

2bn 2θ + n 1−θ( )( )
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Homogeneous group
of optimal size
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shown in figure 4b. Gains from being in a team are greater for high θ agents.9 

2.2 Stability of Nash Equilibrium, Dependence on Team Size 
 A unique Nash equilibrium always exists but for sufficiently large group size 

it is unstable. To see this, consider a team operating away from equilibrium, each 

agent adjusting its effort. As long as the adjustment functions are decreasing in 

E~i then one expects the Nash levels to obtain. Because aggregate effort is a linear 

combination of individual efforts, the adjustment dynamics can be conceived of 

in aggregate terms. In particular, the total effort level at time t + 1, E(t+1), is a 

decreasing function of E(t), as depicted notionally in figure 5 for a five agent 

firm, with the dependence of E(t+1) on E(t) shown as piecewise linear. 

E(t+1)

  E(t) 
Figure 5: Phase space of effort level adjustment, n = 5 

The intersection of this function with the 45° line is the equilibrium total effort. 

However, if the slope at the intersection is less than –1, the equilibrium will be 

unstable. Thus, every team has a maximum stable size, dependent on agent θs. 

 Consider the n agent group in some state other than equilibrium at time t, 

with effort levels, e(t) = (e1(t), e2(t), ..., en(t)). At t + 1 let each agent adjust its 

effort using (2), a 'best reply' to the previous period's value of E~i,10 

. 

                                                
9 For analytical characterization of an equal share (partnership) model with perfect exclusionary power see 
Farrell and Scotchmer (1988); an extension to heterogeneous skills is given by Sherstyuk (1998). 
10 Effort adjustment functions that are decreasing in E~i and increasing in θi yield qualitatively similar 
results; see appendix A. While this is a dynamic strategic environment, agents make no attempt to deduce 
optimal multi-period strategies. Rather, at each period they myopically ‘best respond’. This simple behavior 
is sufficient to produce very complex dynamics, suggesting sub-game perfection is implausible. 

ei t + 1( ) = max 0,
−a − 2b E~ i t( )− θiω i( ) + a2 + 4bθi

2 ω i + E~ i t( )( ) a + b ω i + E~ i t( )( )[ ]
2b 1+ θi( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



 

 11 

This results in an n-dimensional dynamical system, for which it can be shown: 

Proposition 3: All teams are unstable for sufficiently large group size. 

Proof: Start by assessing the eigenvalues of the Jacobian matrix:11  

!!" ≡
!!!
!!!

= 1
1+ !!

!!!
! + 2! !! + !~!∗

!! + 4!!!! !! + !~!∗ ! + 2! !! + !~!∗
− 1 , () 

with Jii = 0. Since each θi ∈ [0, 1] it can be shown that Jij ∈ [-1, 0], and Jij is 

monotone increasing with θi,. The RHS of () is independent of j, so each row of 

the Jacobian has the same value off the diagonal, i.e., Jij ≡ ki for all j ≠ i. Overall, 

 , 

with each of the ki ≤ 0. Stability of equilibrium requires that this matrix’s 

dominant eigenvalue, λ0, have modulus strictly inside the unit circle. It will now 

be shown that this condition holds only for sufficiently small group sizes. Call ρi 

the row sum of the ith row of J. It is well-known (Luenberger 1979: 194-195) that 

mini ρi ≤ λ0 ≤ maxi ρi. Since the rows of J are comprised of identical entries 

 . () 

Consider the upper bound: when the largest ki < 0 there is some value of n 

beyond which λ0 < -1 and the solution is unstable. Furthermore, since large ki 

corresponds to agents with high θi, it is these agents who determine group 

stability. From (A.2), compute the maximum stable group size, Nmax, by setting 

λ0 = -1 and rearranging: 

 , () 

where ⎣z⎦ refers to the largest integer less than or equal to z. Groups larger than 

nmax will never be stable, that is, (A.3) is an upper bound on group size.  � 
                                                
11 Technically, agents who put in no effort do not contribute to the dynamics, so the effective dimension of 
the system will be strictly less than n when such agents are present. 

 

J =

0 k1  k1
k2 0  k2
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kn  kn 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤
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⎥
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⎥

n −1( )min
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ki ≤ λ0 ≤ n −1( )max
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max

i
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 For any of b, E~i or ωi » a, such as when a ~ 0, ki ≈ (θi -1)/(θi +1). Using this 

together with (A.3) we obtain an expression for nmax in terms of preferences 

 . () 

The agent with highest income preference thus determines the maximum stable 

group size. Other bounds on λ0 can be obtained via column sums of J. Noting the 

ith column sum by γi, we have mini γi ≤ λ0 ≤ maxi γi, which means that 

 . () 

These bounds on λ0 can be written in terms of the group size by substituting n  

for the sums. Then an expression for nmax can be obtained by substituting λ0 = 1 

in the upper bound of (A.5) and solving for the maximum group size, yielding 

 . () 

The bounds given by (A.3) and (A.6) are the same (tight) for homogeneous 

groups, since the denominators are identical in this case. 

Example 3: Onset of Instability with Team Size 

 Consider a homogeneous group of agents having θ = 0.7, with a = b = ω = 1. 

From (A.4) the maximum stable group size is 6. Here we investigate how 

instability arises as the group grows. For an agent working alone the optimal 

effort, from (3), is 0.770, utility is 0.799. Now imagine two agents working 

together. From (4) the Nash efforts are 0.646 and utility increases to 0.964. Each 

element of the Jacobian () is identical; call this k. For n = 2, k = -0.188 = λ0. For 

n = 3 the utility is higher and λ0 = -0.368. The same qualitative results hold for 

group sizes 4 and 5, with λ0 approaching -1. At n = 6 efforts again decline and 

now each agent’s utility is lower. Adding one more agent to the group (n = 7) 

causes λ0 to fall to -1.082: the group is unstable—any perturbation of the Nash 

equilibrium creates dynamics that do not settle down. All of this is summarized 

in table 1. 
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n e* U(e*) k λ0 = (n-1)k 
1 0.770 0.799 not applicable not applicable 
2 0.646 0.964 -0.188 -0.188 
3 0.558 1.036 -0.184 -0.368 
4 0.492 1.065 -0.182 -0.547 
5 0.441 1.069 -0.181 -0.726 
6 0.399 1.061 -0.181 -0.904 
7 0.364 1.045 -0.180 -1.082 

Table 1: Onset of instability in a group having θ = 0.7; Nash eq. in groups larger than 6 are unstable 

Groups of greater size are also unstable in this sense. For lesser θ instability 

occurs at smaller sizes, while groups having higher θ can support larger numbers. 

Figure 6 shows the maximum stable firm size (in green) for all θ with a = b = ω = 1, 

with the smallest size at which instability occurs (red). The lower (magenta) line is the 

optimal firm size (figure 4a), which is very near the stability boundary, sometimes in the 

unstable region. 

 
Figure 6: Unstable Nash equilibria in homogeneous groups having income preference θ 

This is reminiscent of the ‘edge of chaos’ literature, for systems poised at the 

boundary between order and disorder (2002). 

Unstable Equilibria and Pattern Formation Far From Agent Level Equilibria 

 Unstable equilibria may be viewed as problematical if one assumes agent 

level equilibria are necessary for social regularity. Games in which optimal 

strategies are cycles have long been known (e.g., Shapley 1964, Shubik 1997). 

Solution concepts can be defined to include such possibilities (Gilboa and Matsui 

1991). While agent level equilibria are sufficient for macro-regularity, they are  
not necessary. When agents are learning or in combinatorially rich environments, 

as they are here, fixed points are unlikely to be realized. Non-equilibrium models 
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in economics include Papageorgiou and Smith (1983) and Krugman (1996).12 

 Real firms are inherently dynamic: workers leave, new ones arrive, everyone 

adjusts.13 Indeed, there is vast turnover of jobs and firms, as already indicated. Of 

the largest 5000 U.S. firms in 1982, in excess of 65% of them no longer existed 

as independent entities by 1996 (Blair, Kruse and Blasi 2000)! ‘Turbulence’ well 

describes such volatility (Beesley and Hamilton 1984, Ericson and Pakes 1995). 

3 From One Team to Six Million Firms 
 Consider a large population of agents in which many teams form 

simultaneously. If one or more of these teams becomes unstable some of the 

agents will look for employment in other teams, or perhaps they will form new 

teams if it makes them better off. What happens overall? Do lots of little teams 

form or a few big ones? Is a static equilibrium of agents in teams reached if we 

wait long enough? Are patterns produced in the population of teams that are 

recognizable vis-á-vis real firms? Here I show that such patterns do arise and can 

be made to closely resemble data on U.S. firms. 

3.1 Realizing Realistic Firms 
 I study the formation of teams within a population using software agents. The 

set-up for the agent-based model is just like the analytical one. Total output of a 

firm consists of both constant and increasing returns. Preferences and 

endowments, θ and ω  respectively, are heterogeneous across agents. When agent 

i acts it searches over [0, ωi] for the effort maximizing its next period utility. 

Because many firms will arise in the computational model, it is necessary to 

specify how agents move between firms. Each agent has an exogenous social 

network, an Erdös-Renyi graph, consisting of νi other agents. It considers (a) 

staying in its current firm, (b) joining νi other firms—in essence an on-the-job 

search over its social network (Granovetter 1973, Montgomery 1991)—and (c) 

starting up a new firm. It chooses the option that yields greatest utility. Since 

agents evaluate only a small number of firms their information is very limited. 
                                                
12 Non-equilibrium models are better known and well-established in other sciences, e.g., in mathematical 
biology the instabilities of certain PDE systems are the basis for pattern formation (Murray 1993). 
13 Arguments against firm equilibrium include Kaldor (1972, 1985), Moss (1981) and Lazonick (1991). 
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We utilize 120 million agents, roughly the size of the U.S. private sector. 

Specifically, about 5 million agents are activated each period, corresponding to 

one calendar month, in rough accord with job search frequency (Fallick and 

Fleischman 2001) and closely approximating the distribution of job tenure. The 

‘base case’ parameterization of the model in table 2 was developed by seeking 

good fits to the many empirical data described in the next three subsections.14. 

Model Attribute Value 
number of agents 120,000,000 

constant returns coefficient, a uniform on [0, 1/2] 
increasing returns coefficient, b uniform on [3/4, 5/4] 
increasing returns exponent, β uniform on [3/2, 2] 
distribution of preferences, θ uniform on [0, 1] 

endowments, ω 1 
compensation rule equal shares 

number of neighbors, ν uniform on [2,6] 
activation regime uniform (all agents active each period) 

probability of agent activation/period 4% of total agents (4,800,000) 
time calibration: one model period one month of calendar time 

initial condition all agents in singleton firms 

Table 2: 'Base case' configuration of the computational model 

Execution of the model can be summarized in pseudo-code: 
• INSTANTIATE and INITIALIZE time, agent, firm, and data objects; 
• REPEAT: 

o FOR each agent, activate it with 4% probability: 
§ Compute e* and U(e*) in current firm; 
§ Compute e* and U(e*) for starting up a new firm; 
§ FOR each firm in the agent’s social network: 

• Compute e* and U(e*); 
§ IF current firm is not best choice THEN leave: 

• IF start-up firm is best THEN form start-up; 
• IF another firm is best THEN join other firm; 

o FOR each firm: 
§ Sum agent inputs and then do production; 
§ Distribute output; 

o COLLECT monthly and annual statistics; 
o INCREMENT time and reset periodic statistics; 

Each worker is represented as an agent in this model, and both agents and firms 

are software objects. It is important to emphasize that this is not a numerical 

model: there are no (explicit) equations governing the aggregate level; the only 

equations present are for agent decisions. “Solving” an agent model means 

                                                
14 For model attributes with random values, each agent or firm is given a realization when it is instantiated. 



 

 16 

marching it forward in time to see what patterns emerge (cf. Axtell 2000). 

3.2 Aggregate Dynamics 
 Initially, agents work alone. As each is activated it discovers it can do better 

working with another agent to jointly produce output. Over time some teams 

expand as certain agents find it welfare-improving to join them, while other 

teams contract as their agents discover better opportunities elsewhere. New firms 

are started-up by agents who lack better opportunities. Overall, once an initial 

transient passes an approximately stationary macrostate emerges.15 In this macro 

steady-state agents continue to adjust their efforts and change jobs, causing firms 

to evolve, and so there is no equilibrium at the agent level. 

Number of Firms and Average Firm Size 

 The number of firms varies over time, due both to entry—agents leaving 

extant firms for start-ups—and the demise of failing firms. In the U.S. about 6 

million firms have employees. Figure 7 shows the number of firms (blue) in the 

steady-state over 25 years (300 months), in good agreement with the data.  

 (months) 
Figure 7: Typical time series for the total number of firms (blue), new firms (green), and exiting 

firms (red) over 25 years (300 months); note higher volatility in exits. 

There are ~100K startups with employees in the U.S. monthly (Fairlie 2012), 

quite close to the number produced by the model as shown in figure 6 (green). 

Exits are shown in red. The model predicts higher variability in firm exit than 

entry. Mean firm size in the U.S. is about 20 workers/firm (Axtell 2001). Since 

there are 120 million agents in the model and the number of firms that emerges is 

                                                
15  Movies are available at css.gmu.edu/~axtell/Rob/Research/Pages/Firms.html#6. 
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approximately 6 million, mean firm size, as shown in figure 8, is very close to 20. 

(months) 
Figure 8: Typical time series for average firm size (blue) and maximum firm size (magenta) 

Also shown in figure 7 is the size of largest firm (red), which fluctuates around a 

million. The largest firm in the U.S. (Wal-Mart) employs about 1.3 million today. 

Typical Effort and Utility Levels 

 Agents who work together improve upon their singleton utility levels with 

reduced effort, as shown in figure 9. This is the raison d’être of firms. 

 
Figure 9: Typical time series for (a) average effort level in the population (blue) and in the largest 

firm (magenta), (b) average utility (blue) and in the largest firm (magenta) 

While efforts in large firms fluctuate, average effort overall is quite stable (figure 

8a). Much of the dynamism in the ‘large firm’ time series is due to the identity of 

the largest firm changing. Figure 8b shows the average agent utility (blue) is 

usually less than that in the largest firm (red). Occasionally utility in large firms 

falls below average, signaling that the large firm is in decline. 

Labor Flows 

 In the U.S. economy people change jobs with, what is to some, “astonishingly 

high” frequency (Hall 1999: 1151). Job-to-job switching (aka employer-to-

employer flow) represents 30-40% of labor turnover, substantially higher than 

unemployment flows (Fallick and Fleischman 2001, Faberman and Nagypál 
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2008, Nagypál 2008, Davis, Faberman and Haltiwanger 2012). Moving between 

jobs is intrinsic to this model. In figure 10 the level of monthly job changing at 

steady-state is shown (blue)—just over 3 million/month—along with measures of 

jobs created (red) and jobs destroyed (green). Job creation occurs in firms with 

net monthly hiring, while job destruction means firms lose workers (net). Job 

destruction is about 4x more volatile than job creation, comparable to U.S. data 

(Davis, Haltiwanger and Schuh 1996). 

 
Figure 10: Typical monthly job-to-job changes (blue), job creation (yellow) and destruction (green) 

Overall, figures 7-10 develop intuition about typical dynamics of firm 

formation, growth and dissolution. They are a 'longitudinal' picture of typical 

micro-dynamics of agents and firms. We now look at cross-sectional properties. 

3.3 Firms in Cross-Section: Sizes, Ages and Growth Rates 
 Watching firms form, grow, and die in the model movies (see footnote 14), 

one readily sees the coexistence of big firms, medium-sized ones, and small ones. 

Firm Sizes (by Employees and Output) 
 At any instant there exists a distribution of firm sizes in the model. At steady-

state, sizes are skew, with a few big firms and larger numbers of progressively 

smaller ones. Typical model output is shown in figure 11 for firm size measured 

by employees and output. The modal firm size is 1 employee with the median 

between 3 and 4, in agreement with the data on U.S. firms. Firm sizes, S, are 

approximately Pareto distributed, the complementary CDF of which, !! !  is 

!" ! ≥ ! ≡ !! !;  !, !! = !!
!

!
, ! ≥ !!,! ≥ 0 

where s0 is the minimum size, unity for size measured by employees. The U.S. 

data are well fit by α ≈ -1.06 (Axtell 2001), the line in figure 10a. 
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Figure 11: Stationary firm size distributions (PMFs) by (a) employees and (b) output 

The Pareto is a power law, and for α = 1 is known as Zipf’s law. Note that the 

power law fits almost the entire distribution of firm sizes. A variety of 

explanations for power laws have been proposed.16 Common to these is the idea 

that such systems are far from (static) equilibrium at the microscopic (agent) 

level. Our model is non-equilibrium with agents regularly changing jobs. 

Labor Productivity 

 Firm output per employee is labor productivity. Figure 12 plots average firm 

output as a function of firm size. Fitting a line by several methods indicates that 

ln(O) scales linearly with ln(S) with slope very nearly 1. 

 
Figure 12: Constant returns at the aggregate level despite increasing returns at the micro-level 

This represents essentially constant returns to scale, also a feature of U.S. output 

data; see Basu and Fernald (1997). That nearly constant returns occur at the 

aggregate level despite increasing returns at the micro-level suggests the 

difficulties of making inferences across levels. An explanation of why this occurs 

is apparent. High productivity firms grow by adding agents who work less hard 

than incumbents, thus such firms are driven toward the average productivity. In 
                                                
16 Bak (1996: 62-64), Marsili and Zhang (1998), Gabaix, (1999), Reed (2001), and Saichev et al. (2010); for 
a review see (Mitzenmacher 2004). 
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essence, each agent who changes jobs ‘arbitrages’ returns across firms.17  

 It is well known that there is large heterogeneity in labor productivity across 

firms (e.g., Dosi 2007). Shown in figure 13a are data on all U.S. companies for 

three size classes: 1-99 employees (blue), 100-9,999 (red) and 10,000+ (green). 

 
Figure 13: Labor productivity (a) U.S. data (Census) and (b) model output in arbitrary units 

Note the log-log coordinates, so the right tail is very nearly a power law with 

large slope. Souma et al. (2009) have studied the productivity of Japanese firms 

and find similar results. Figure 13b is model output for the same size classes. 

Firm Ages, Survival Rates and Lifetimes 

 Using data from the BLS Business Employment Dynamics program, figure 

14 gives the age distribution (PMF) of U.S. firms, in semi-log coordinates, with 

each colored line representing the distribution reported in a recent year.  

 
Figure 14: Firm age distributions (PMFs), U.S. data 2000-2011 (lines) and model output 

(points); source: BLS (www.bls.gov/bdm/us_age_naics_00_table5.txt) and author calculations 

Model output is overlaid on the raw data as points and agrees reasonably well. 

Average firm lifetime and standard deviation are 14-15 years here. The curvature 

in the data implies that firm ages are better fit by the Weibull distribution than the 

exponential (Coad 2010). 

                                                
17 As output per worker represents wages in our model, there is little wage-size effect (Brown and Medoff 
1989, Even and Macpherson 2012). 
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 Data on U.S. firm ages is right censored so little systematic information is 

known about long-lived firms, except that they are rare (de Geus 1997). Further, 

the role of mergers and acquisitions (M&A) makes the lifetime of a firm 

ambiguous, as when a younger firm buys an older one. This model can be run for 

a long time and makes strong predictions about the distribution of firm ages, 

along with the closely related idea of firm lifetimes, as shown in figure 15. 

 
Figure 15: Firm age distributions and lifetime distributions (PMFs) in the long run (months) 

 If firm ages were exactly exponentially distributed then the survival 

probability would be constant, independent of age (Barlow and Proschan 1965). 

Curvature in figure 13 indicates that survival probability depends on age. 

Empirically, survival probability increases with age (Evans 1987, Hall 1987, 

Haltiwanger, Jarmin and Miranda 2011). This is shown in figure 16 for U.S. 

companies in recent years (lines) along with model output (points). 

 
Figure 16: Firm survival probability increases with firm age and size, U.S. data 1994-2000 

(lines) and model (points); source: BLS and author calculations 

The model slightly over-predicts the survival probabilities of young firms. 

Joint Distribution of Firms by Size and Age 

The joint distribution of size and age is shown in figure 17, a normalized 
histogram in log probabilities. 
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Figure 17: Histogram of the steady-state distribution of firms by log(S) and age in the model 

Note that log probabilities decline approximately linearly as a function of age and 

log(S). Many of the largest firms in the model are relatively young ones that grow 

rapidly, much like in the U.S. economy (e.g., Luttmer 2011, figure 1). 

Firm Growth Rates 

 Call St a firm’s size at time t. Its one period growth rate is G ≡ St+1/St ∈ R+.18 

In a population of firms consider G to be a stationary random variable. Gibrat’s 

law of proportional growth (1931) implies that if all firms have the same G then 

St+1 = GSt is lognormally distributed at any t while the mean and variance of S 

grows with time (Sutton 1997: 40), i.e., S is not stationary. Adding firm birth and 

death processes can lead to stationary firm size distributions (see de Wit (2005)). 

Historically, determination of the overall structure of G was limited by the 

relatively small samples of firm data available (e.g., Hart and Prais 1956). 

Beginning with Stanley et al. (1996), who analyzed data on publicly-traded U.S. 

manufacturing firms (Compustat), there has emerged a consensus that g ≡ ln(G) 

∈ R is well-fit by the Subbotin or exponential power distribution.19 This 

                                                
18 An alternative definition of G is 2(St+1 - St)/(St + St+1), making G ∈[-2, 2] (Davis, Haltiwanger and Schuh 
1996). Although advantageous because it keeps exiting and entering firms in datasets for one additional 
period, it obscures differences in growth rate tails by artificially truncating them.. 
19 Subsequent work includes European pharmaceuticals (Bottazzi, Dosi, Lippi, Pammolli and Riccaboni 
2001) and Italian and French manufacturers (Bottazzi, Cefis, Dosi and Secchi 2007, Bottazzi, Coad, Jacoby 
and Secchi 2011). Bottazzi and Secchi (2006) give theoretical reasons why g should have η ~ 1, having to do 
with the central limit theorem for the number of summands geometrically distributed (Kotz, Kozubowski 
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distribution embeds the Gaussian and Laplace distributions and has PDF 

!
2!!Γ 1 ! !"# − ! − !

!!

!
, 

where  is the average log growth rate, σg is proportional to the standard 

deviation, and η is a parameter; η = 2 corresponds to the normal distribution, η = 

1 the Laplace or double exponential.20  

 Data on g for all U.S. establishments has been analyzed by Perline et al. 

(2006), shown as a histogram in figure 18 for 1998-99, decomposed into seven 

logarithmic size classes. Note the vertical axis is ln(frequency). In comparison to 

later years, e.g., 1999-2000, 2000-2001, this distribution is very nearly stationary. 

 
Figure 18: Histogram of annual g for all U.S. establishments, by size class; source: Census 

Perline et al. (2006) find that η ~ 0.60 for the size 32-63 size class, lesser for 

smaller firms, larger for bigger ones. The gross statistical features of g are: 

A. Growth rates depend on firm size—small and large firms have different g. 

This means that Gibrat’s law is false: all firms do not have the same G. 

B. The mode of g ~ 0, so mode(G) ~ 1, i.e., many firms do not grow. 

C. There is more variance for firm decline (g < 0) than for growth (g > 0), i.e., 

there is more variability in job destruction than job creation (Davis, 

Haltiwanger and Schuh 1996), requiring an asymmetric Subbotin distribution 
                                                                                                                               
and Podgorski 2001). Schwarzkopf (2010, 2011) argues that g is Levy-stable. 
20 For g Laplace-distributed, G follows the log-Laplace distribution, a kind of double-sided Pareto 
distribution (Reed 2001), a combination of the power function distribution on (0, 1) and the Pareto on (1, ∞). 

� 
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(Perline, Axtell and Teitelbaum 2006). 

D. Growth rate variance declines with firm size (Hymer and Pashigian 1962, 

Mansfield 1962, Evans 1987, Hall 1987, Stanley, et al. 1996). 

There are at least five other well-known regularities concerning firm growth rates 

that are not illustrated by the previous figure: 

E. Mean growth is approximately 0; 

F. Mean grow rate declines with firm size, and is positive for small firms, 

negative for large firms (Mansfield 1962, Birch 1981, Evans 1987, Hall 1987, 

Davis, Haltiwanger and Schuh 1996, Neumark, Wall and Zhang 2011); 

G. Mean growth declines with age (Evans 1987, Haltiwanger, Jarmin and 

Miranda 2008); 

H. Mean growth rises with size, controlling for age (Haltiwanger, Jarmin and 

Miranda 2011); 

I. Growth rate variance declines with firm age (Evans 1987). 

With these empirical features of firm growth rates as background, figure 19 

shows distributions of g produced by the model for seven classes of firm sizes, 

from small (blue) to large (purple) ones. 

 
Figure 19: Distribution of annual g by firm size: 8-15 (blue), 16-31 (red), 32-63 (green), 64-127 

(black), 128-255 (orange), 256-511 (yellow), and 512-1023 (purple) 

In this plot we can see at least half of the empirical properties of firm growth: g 

clearly depends on firm size (A), with mode(g) = 0 (B) and  ~ 0.0 (E). It is 

harder to see that there is more variance in firm decline than growth (C) but it is 

the case numerically. Clearly, variance declines with firm size (D). Figure 20 

shows mean growth rates as a function of firm (a) size and (b) age. � 

g 



 

 25 

 
Figure 20: Dependence ! on (a) firm size and (b) firm age, model output 

It is clear from these figures that  declines with size (F) and similarly for age 

(G). For more than 30 years, since the work of Birch (1981, 1987), economists 

have debated the meaning of figures like 20a. Specifically, given that small firms 

are often young and young firms small (e.g., figure 17), it is not clear whether 

size or age plays the larger role in determining positive growth rates. Haltiwanger 

and co-workers (2008, 2009, 2011) control for age and argue that it is not small 

firms that create jobs but rather young ones. The problem with such ‘controls’ for 

non-montonic relationships is that they mix effects across distinct (size, age) 

classes. The only actual way to understand the distinct effects of size and age is 

to show how they each effect . This is done in figure 21, where each firm is 

placed into a (size, age) bin and the average g computed locally. 

 
Figure 21: Dependence of ! on firm size and age 

To see precisely whether size or age matters most, a no growth (  = 0) plane is 

superimposed on the model’s (size, age). From this we can see that young 

firms grow the most with a small contribution from small firms. 

Firm growth rate variability falls with size (D) and age (I). Figures 22a and b 

show this unconditionally for the model. 
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Figure 22: Dependence of the standard deviation of g on (a) firm size and (b) firm age 

Specifically, the standard deviation of g falls with size in figure 21a. Based on 

central limit arguments one expects this to be proportional to S-κ, κ = ½ meaning 

the fluctuations are independent while κ < ½ implies they are correlated. Stanley 

et al. (1996) find κ ~ 0.16 ± 0.03 for publicly-traded firms (Compustat data) 

while Perline et al. (2006) estimate κ ~ 0.06 for all U.S. establishments. From the 

model output κ = 0.054 ± 0.010. A variety of explanations for 0 ≤ κ ≤ ½ have 

been proposed (Buldyrev, et al. 1997, Amaral, et al. 1998, Sutton 2002, Wyart 

and Bouchaud 2002, Fu, et al. 2005, Riccaboni, Pammolli, Buldyrev, Ponta and 

Stanley 2008), all involving firms having internal structure. Note that no such 

structure exists here, where firms are simply collections of agents, yet 

dependence of the standard deviation of g on size is present nonetheless. 

Over any epoch of time some firms grow and others are decline. Expanding 

firms may shed workers while shrinking ones hire. Figure 23 shows that growing 

firms hire while suffering separations while declining firms hire even when 

separations are the norm, much like in the empirical data (Davis, Faberman and 

Haltiwanger 2006). The ‘hiring’ line is quite comparable to the empirical result, 

but the ‘separations’ line is different—too few separations in the model. 

 
Figure 23: Labor transitions as a function of firm growth rate, model output 
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Having explored firms cross-sectionally, we next turn to the population of agents.  

3.4 Agents in Cross-Section: Wages, Job Tenure, Employment 
 Steady-state worker behavior is quantified here. While each agent’s situation 

adjusts uniquely, at the population level there emerge robust statistical features. 

Wage Distribution 

 While income and wealth are famously heavy-tailed (Pareto 1971 [1927], 

Wolff 1994), wages are less so. A recent empirical examination of U.S. adjusted 

gross incomes argues that an exponential distribution fits the data below about 

$125K, while a power law better fits the upper tail (Yakovenko and Rosser 

2009). Figure 24 gives the income distribution from the model. 

 
Figure 24: Wage distribution (arbitrary units) 

Since incomes are nearly linear in this semi-log coordinate system, they are 

approximately exponentially-distributed. 

Job Tenure Distribution 

 Job tenure in the U.S. has a median of just over 4 years and a mean of about 

8.5 years (BLS Job Tenure 2010). The complementary-cumulative distribution 

for 2010 is figure 25 (points) with the straight line being the model output. As 

with income, these data are well-approximated by an exponential distribution. 

 
Figure 25: Job tenure (months) is exponentially-distributed in the U.S. (dots, binned) and in the 

model (line); source: BLS and author calculations 
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The base case of the model is calibrated to make these distributions coincide. 

That is, the number of agent activations per period is specified in order to make 

the line go through the points, thus defining the meaning of one unit of time in 

the model, here a month. The many other dimensions of the model having to do 

with time—e.g., firm growth rates, ages—derive from this basic calibration. 

Employment as a Function of Firm Size and Age 

 Because the model’s firm size distribution by employees is almost exactly 

right (figure 10a), employment as a function of firm size is also correct. The so-

called Florence median is the firm size at which half of Americans work in larger 

and half in smaller firms. It is about 500 for the U.S. and in the model. In figure 

26 the dependence of employment on firm age is shown. About half of American 

workers are in firms younger than 25 years of age. The U.S. data are shown as a 

counter-cumulative distribution while the model output is shown as points. 

 
Figure 26: Counter cumulative distribution of employment by firm age in years in the U.S. (line) 

and in the model (dots); source: BLS (BDM), available online 

Again there is good agreement between the model and the data. Employment 
changes by age (Haltiwanger, Jarmin and Miranda 2008) can also be reproduced. 

3.5 Inter-firm Worker Migration: The Labor Flow Network 
 In the model, as in the real world, workers regularly move between jobs. Here 

the structure of such migrations is studied, using a graph theoretic representation 

of inter-firm labor flows. Let each firm be a node (vertex) in such a graph, and an 

edge exists between two firms if a worker has migrated between the firms. 

Elsewhere this has been called the labor flow network (Guerrero and Axtell 

2013). In figure 27 four properties of this network for the base case of the model 

are shown. The upper left panel gives the degree distribution, while the upper 

right is the distribution of edge weights. The lower left panel plots the clustering 
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coefficient as a function of degree, while the lower right panel is the assortativity 

(average neighbor degree) as a function of degree. These closely reproduce data 

from Finland and Mexico (Guerrero and Axtell 2013), shown as insets. 

 

 
Fig 27: Properties of the labor flow network (a) degree distribution, (b) edge weight distribution, 
(c) clustering as a function of degree, and (d) average neighbor degree (assortativity) vs degree 

3.6 Agent Welfare in Endogenous, Multi-Agent Firms 
 Each time an agent is activated it seeks higher utility, which is bounded from 

below by the singleton utility. Therefore, it must be the case that all agents prefer 

the non-equilibrium state to one in which each is working alone—the state of all 

firms being size one is Pareto-dominated by the dynamical configurations above.  

 To analyze welfare of agents, consider homogeneous groups of maximum 

stable size, having utility levels shown in figure 4b, replotted in figure 28. 

 
Figure 28: Utility in single agent firms, optimal homogeneous firms, and realized firms, by θ 
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Overlaid on these smooth curves is the cross-section of utilities in realized 

groups. The main result here is that most agents prefer the non-equilibrium world 

to the equilibrium outcome with homogeneous groups. 

4 Robustness of the Results 
In this section the base model of table 1 is varied and the effects described. 

The main lesson of this section is that, while certain behavioral and other features 

can be added to this model and the empirical character of the results preserved, 

relaxation of any of the basic specifications of the model, individually, is 

sufficient to break its connection to the data. 

Against this simple model it is possible to mount the following critique. Since 

certain stochastic growth processes are known to yield power law distributions, 

perhaps the model described above is simply a complicated way to generate 

randomness. That is, although the agents are behaving purposively, this may be 

just noise at the macro level. If agent behavior were simply random, would this 

too yield realistic firms? We have investigated this in two ways. First, imagine 

that agents randomly select whether to stay in their current firm, leave for another 

firm, or start-up a new firm, while still picking an optimal effort where they end 

up. It turns out that this specification yields only small firms, under size 10. 

Second, if agents select the best firm to work in but then choose an effort level at 

random, again nothing like skew size distributions arise. These results suggest 

that any systematic departure from (locally) purposive behavior is unrealistic. 

One specification found to have no effect on the model in the long run is the 

initial condition. Starting the agents in groups seems to modify only the duration 

of the initial transient. Next how does the number of agents mater? While the 

base case of the model has been realized for 120 million agents, figure 29 gives 

the dependence of the largest firm realized as the population size is varied. The 

maximum firm size rises sub-linearly with the size of the population. 
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Figure 29: Largest firm size realized as a function of the number of agents 

 Next, consider alternative agent activation schemes. While it is well-known 

that synchronous activation can produce anomalous output (Huberman and 

Glance 1993), asynchronous activation can also lead to subtle effects based on 

whether agents are activated randomly or uniformly (Axtell, Axelrod, Epstein 

and Cohen 1996). Moving from uniform to random activation produces slight 

changes in output.  

 How does the specification of production matter? Of the three parameters that 

specify the production function, a, b, and β, as increasing returns are made 

stronger, larger firms are realized and average firm size increases. For β > 2, very 

large firms arise; these are ‘too big’ empirically.21 

 Are the results presented above robust to different kinds of agent 

heterogeneity? With preferences distributed uniformly on (0,1) in the base case a 

certain number of extreme agents exist: those with θ ≈ 0 are leisure lovers and 

those with θ  ≈ 1 love income. Other distributions (e.g., beta, triangular) were 

investigated and found to change the results quantitatively but not qualitatively. 

Removing agents with extreme preferences from the population may result in too 

few large firms forming, but this can be repaired by increasing β. If agent 

preferences are too homogeneous the model output is qualitatively different from 

the empirical data. Finally, CES preferences do not alter the general character of 

the results. Overall, the results are robust for heterogeneous preferences. 

 Social networks play an important role in the model. In the base case each 

                                                
21 If β is sufficiently large the model can occasionally ‘run away’ to a single large firm. 
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agent has 2 to 6 friends. This number is a measure of the size of an agent's search 

or information space, since the agent queries these other agents when active to 

assess the feasibility of joining their firms. The main qualitative impact of 

increasing the number of friends is to slow model execution. 

 However, when agents query firms for jobs something different happens. 

Asking an agent about a job may lead to working at a big firm. But asking a firm 

at random usually leads to small firms and empirically-irrelevant model output 

because most firms are small. 

How does compensation matter for the results? Pay proportional to effort:22 

!!! !!;!! ,!~! = !!
! ! !

!!
!! − !! !!!! 

leads to a breakdown in the basic model results, with one giant firm forming. The 

reason for this is that there are great advantages from the increasing returns to 

being in a large firm and if everyone is compensated in proportion to their effort 

level no one can do better away from the one large firm. Thus, while there is a 

certain ‘perfection’ in the microeconomics of this pay scheme, it completely 

destroys all connections of the model to empirical data. 

 Next consider a mixture of compensation rules, with workers paid 

partially in proportion to how hard they work and partially based on total output. 

Calling the U of equation (1) !!!, a convex combination of utility functions is 

 . 

Parameter f moves compensation between ‘equal’ and ‘proportional’. This can be 

maximized analytically for β = 2, but produces a messy result. Experiments 

varying f show the qualitative character of the model is insensitive. Additional 

sensitivity tests and model extensions are described in the appendix, including 

variants in which one agent in each firm acts as a residual claimant and hires and 

fires workers, relaxing the free entry and exit character of the base model. 
                                                
22 Encinosa et al. (1997) studied compensation systems empirically for team production environments in 
medical practices. They find that “group norms” are important in determining pay practices. Garen (1998) 
empirically links pay systems to monitoring costs. More recent work is Shaw and Lazear (2008). 
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5 Summary and Conclusions 
A model in which individual agents form firms has been analyzed 

mathematically, realized computationally, and tested empirically. Stable 

equilibrium configurations of firms do not exist in this model. Rather, agents 

constantly adapt to their economic circumstances, changing jobs when it is in 

their self-interest to do so. This multi-level model, consisting of a large number 

of simple agents in an environment of increasing returns, is sufficient to generate 

macro-statistics on firm sizes, ages, growth rates, job tenure, wages, networks, 

etc., that closely resemble data, summarized in table 3. 
 Datum or data compared Source In text 
1 Size of the U.S. workforce: 120 million Census Table 1 
2 Number of firms with employees: ~6 million Census Figure 6 
3 Number of new firms monthly: ~100 thousand Fairlie (2012) Figure 6 
4 Number of exiting firms monthly: ~100 thousand Necessary for steady-state Figure 6 
5 Variance higher for exiting firms than new firms various Figure 6 
6 Average firm size: 20 employees/firm Census Figure 7 
7 Maximum firm size: ~1 million employees Forbes 500 Figure 7 
8 Number of job-to-job changes monthly: ~3+ million Fallick and Fleischman (2004) Figure 9 
9 Number of jobs created monthly: ~2 million Fallick/Fed spreadsheet Figure 9 
10 Number of jobs destroyed monthly: ~2 million Fallick/Fed spreadsheet Figure 9 
11 Variance higher for jobs destroyed than jobs created Davis, et al. (1996) Figure 9 
12 Firm size distribution (employees): ~Zipf Census/Axtell (2001) Figure 10a 
13 Firm size distribution (output): ~Zipf Census/Axtell (2001) Figure 10b 
14 Aggregate returns to scale: constant Basu and Fernald (1997) Figure 11 
15 Productivity distribution: Pareto tail Souma et al. (2009) Figure 12 
16 Firm age distribution: Weibull; mean ~14 yrs Bureau of Labor Statistics Figure 13 
17 Firm survival probability: increasing with age Bureau of Labor Statistics Figure 15 
18 Joint dist. of firms, size and age: linear in age, log size Haltiwanger et al. (2011) Figure 16 
19 Firm growth rates depend on firm size various, see text Figures 17, 18 
20 Log firm growth rates (g) are Subbotin-distributed Stanley et al. [1996] Figure 17, 18 
21 Mode(g) = 0.0, many firms do not grow various, see text Figure 17, 18 
22 More variance for firm decline than firm growth Davis, et al. (1996) Figure 17, 18 
23 Mean of ! near 0.0, + for small firms, - for large Birch [1981], others Fig 19a, 20 
24 Variance of g declines with firm size Stanley et al. [1996] Figure 21a, 23 
25 Mean of g declines with firm age Haltiwanger et al. (2011) Figure 19b, 20 
26 Variance of g declines with firm age Evans (1987) Figure 21b 
27 Mean of g as function of size, age: young firms grow Haltiwanger et al. (2011) Figure 20 
28 Simultaneous hiring and separation Davis, et al. (2006) Figure 22 
29 Wage distribution: exponential Yakovenko and Rosser (2009) Figure 23 
30 Job tenure dist.: exponential with mean 90 months Bureau of Labor Statistics Figure 24 
31 Employment vs age: exp. with mean 25 years Bureau of Labor Statistics Figure 25 
32 Florence (firm size weighted) median: 500 employees Census Around fig 25 
33 Degree distribution of the labor flow network (LFN) Guerrero and Axtell (2013) Figure 28a 
34 Edge weight distribution of the LFN Guerrero and Axtell (2013) Figure 28b 
35 Clustering coefficient vs firm size in the LFN Guerrero and Axtell (2013) Figure 28c 
36 Assortativity (degree of neighbors) vs firm size, LFN Guerrero and Axtell (2013) Figure 28d 

Table 3: Empirical data to which the model output is compared; similar data similarly colored 

Overall, firms are vehicles through which agents realize greater utility than they 

would by working alone. The general character of these results is robust to many 

model variations. However, it is possible to sever connections to empirical data 
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with agents who are too homogeneous, too random, or too rational. 

5.1 Emergence of Firms, Out of Microeconomic Equilibrium 
 The main result of this research is to connect an explicit microeconomic 

model of team formation to emerging micro-data on the population of U.S. 

business firms. Agent behavior is specified at the micro-level with firms 

emerging at a meso-level, and the population of firms studied at the aggregate 

level (figure 30). This micro-meso-macro picture has been created with agent 

computing, realized at full-scale with the U.S. private sector.23 

 
Figure 30: Multi-level schematic of firm formation from agents 

However, despite the vast scale of the model, its specification is actually very 

minimal, so spare as to seem rather unrealistic24—no product markets are 

modeled, no prices computed, no consumption represented, no industries appear, 

and agent behavior is relatively simple. Furthermore, there is no technological 

change and thus no economic growth—all the dynamics are produced simply 

through rearrangements of firm personnel to achieve local improvements in the 

social technology of production (Beinhocker 2006). How is it that such a 

stripped-down model could ever resemble empirical data? 

 This model works because its dynamics capture elements of the real world 

more closely than conventional models involving static equilibria, either with or 

                                                
23 It is folk wisdom that agent models are ‘macroscopes,’ illuminating macro patterns from the micro rules. 
24 In this it is reminiscent of Gode and Sunder and zero-intelligence traders (Gode and Sunder 1993). 
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without external shocks. This is so despite the agents being unequipped to figure 

out optimal multi-period strategies. In defense of such simple agents, the 

environments in which they find themselves are too complex for them to compute 

rational behaviors—each agent’s team contains difficult to forecast contingencies 

concerning co-worker effort levels, the tenure of current colleagues, the arrival of 

new personnel, and fluctuating outside opportunities.25 A major finding of this 

research is that we are able to neglect strategic behavior at the firm level—price 

and quantity-setting, for instance—yet explain many empirical properties of 

firms. Strategic decisions certainly matter for the fortunes of individual firms, but 

seem to not be needed to explain the gross properties of the population of firms. 

More generally, the belief that social (aggregate) equilibria require agent-

level equilibria is problematical (Foley 1994, Axtell forthcoming), a classical 

fallacy of division. The goal of social science is to explain social regularities 

realized at some level ‘above’ the agent behavioral level. While agent-level 

equilibria are commonly treated as necessary, such equilibria are, in fact, only 

sufficient—macroscopic regularities that have the character of statistical steady-

states (e.g., stationary distributions) may result when there do not exist stable 

agent-level equilibria, as we have seen above. The assumption of homogeneity 

across levels, whether explicitly made or implicitly followed as a social norm, 

can be fallacious. Important regularities and patterns may arise at the macro-level 

without the agent level being in Nash or Walrasian equilibrium. Furthermore, 

when stable equilibria exist but require huge amounts of time to be realized, one 

may be better off looking for regularities in long-lived transients. This is 

particularly relevant to coalition formation games in large populations, where the 

number of coalitions is given by the unimaginably vast Bell numbers, meaning 

that anything like optimal coalitions could never be realized during agent 

lifetimes. Perpetual flux in the composition of groups leads naturally to the 

conclusion that microeconomic equilibria have little explanatory power. 

                                                
25 Anderlini and Felli (1994) assert the impossibility of complete contracts due to the complexity of nature. 
Anderlini (1998) describes the kinds of forecasting errors that are intrinsic in such environments. 
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5.2 From Theories of the Firm to a Theory of Firms 
Unfortunately, most extant theories of the firm are steeped in this kind of 

micro-to-macro homogeneity. They begin innocuously enough, with firms 

conceived of as being composed of a few actors. They then go on to derive firm 

performance in response to rivals, strategic uncertainty, information processing 

constraints, and so on. But these derivations interpret the overall performance of 

multi-agent groups and organizations in terms of a few agents in equilibrium,26 

and have little connection to the empirical regularities documented above.27  

 There are two senses in which the model described above is a theory of firms. 

First, from a purely descriptive point of view, the model reproduces the gross 

features of the U.S. firms, while extant theories of the firm cannot.28 Nor are 

most theories sufficiently explicit to be operationalized, mathematically or com-

putationally, their focus on equilibrium leaving behavior away from equilibrium 

unspecified.29 In the language of Simon (1976), these theories are substantively 

rational, not procedurally so. Or, if micro-mechanisms are given, the model is 

only notionally related to data (e.g., Hopenhayn 1992, Kremer 1993, Rajan and 

Zingales 2001), or else the model generates the wrong patterns (e.g., Cooley and 

Quadrini (2001) get exponential firm sizes, Klette and Kortum (2004) get 

logarithmic sizes and incorrect dependence of firm growth rate variance on size).  

The second sense in which my model is a theory of firms is that agent models 

are explanations of the phenomena they reproduce.30 In the philosophy of science 

an explanation is defined with respect to a theory,31 which has to be general 

enough to provide explanations of whole classes of phenomena, while not being 
                                                
26 Least guilty of this charge is the evolutionary paradigm. 
27 For example, the industrial organization textbooks of both Shy (1995) and Cabral (2000) fail to make any 
mention whatsoever of firm size, age, or growth rate distributions, nor do they note either the number of 
firms or the average firm size, either in the U.S. or in other countries! 
28 A variety of models aim for one of these targets, often the firm size distribution (e.g., Lucas 1978, 
Kwasnicki 1998) and only a handful attempt to get more (Luttmer 2007, 2011, Arkolakis 2013). 
29 I began this work with the expectation of drawing heavily on extant theory. While I did not expect to be 
able to turn Coase’s elegant prose into software line-for-line, I did expect to find significant guidance on the 
micro-mechanisms of firm formation. These hopes were soon dashed. 
30 According to Simon (Ijiri and Simon 1977: 118): “To ‘explain’ an empirical regularity is to discover a set 
of simple mechanisms that would produce the former in any system governed by the latter.” 
31 This is the so-called deductive-nomological (D-N) view of explanation; see Hempel (1966). 
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so vague that it can rationalize all phenomena. Each parameterization of an 

agent-based model is an instance of a more general agent ‘theory’. Executing an 

instance yields patterns that can be compared to data, thus making it falsifiable.32 

 My ‘explanation’ for firms is simple: purposive agents in increasing returns 

environments form quasi-stable coalitions. The ability of agents to move between 

such transient teams ‘arbitrages’ away super linear returns. In effect, firms 

compete for high effort individuals. Successful firms in this environment are ones 

that can attract and keep productive workers. This model, suitably parameterized, 

can be compared directly to the emerging micro-data on firms. Today we do not 

have a mathematical derivation of the aggregate (firm population) properties 

from the micro (agent behavior) specifications, so for now we must content 

ourselves with the discovery that such firms result from such purposive agents. 

 This model is a first step toward a more realistic, dynamical theory of the 

firm, one with explicit micro-foundations. Clearly this approach produces 

empirically-rich results. We have produced these results computationally. Today 

computation is used by economists in many ways, to numerically solve equations 

(e.g., Judd 1998), to execute mathematical programs, to run regressions (e.g., 

Sala-i-Martin 1997), to simulate stochastic processes (e.g., Bratley, Fox and 

Schrage 1987), or to perform micro-simulations (e.g., Bergmann 1990)—all 

complementary to conventional theorizing. Agent computing enriches these 

approaches. Like microsimulation, it facilitates heterogeneity, so representative 

agents (Kirman 1992) are not needed. Unlike microsimulation, it features direct 

(local) interactions, so networks (Kirman 1997, Vega-Redondo 2007) are natural. 

Agents possess limited information and are of necessity boundedly rational, since 

full rationality is computationally intractable (Papadimitriou and Yannakakis 

1994). This encourages experimentally-grounded behavioral specifications. 

Aggregation happens, as in the real world, by summing over agents and firms. 

Macro-relationships emerge and are not limited a priori to what the ‘armchair 

economist’ (Simon 1986) can first imagine and then solve for analytically. There 

                                                
32 In models that are intrinsically stochastic, multiple realizations must be made to find robust regularities. 
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is no need to postulate the attainment of equilibrium since one merely 

interrogates a model’s output for patterns, which may or may not include stable 

equilibria. Indeed, agent computing is a natural technique for studying economic 

processes that are far from (agent-level) equilibrium. 

5.3 Economics of Computation and Computational Economics 
We have entered the age of computational synthesis. Across the sciences, 

driven by massive reduction in the cost of computing, researchers have begun to 

reproduce fundamental structures and phenomena in their fields using large-scale 

computation. In chemistry, complex molecules have their structure and properties 

investigated digitally before they are manufactured in the lab (Lewars 2011). In 

biology, whole cell simulation, involving thousands of genes and millions of 

molecules, has recently been demonstrated (Karr, et al. 2012). In fluid 

mechanics, turbulence has resisted analytical solution despite the governing 

equations being known since the 19th Century. Today turbulent flows are studied 

computationally using methods that permit transient internal structures (e.g., 

eddies, vortices) to arise spontaneously (Hoffman and Johnson 2007). In climate 

science whole Earth models couple atmospheric and ocean circulation dynamics 

to study global warming at ever-finer spatiotemporal resolution (Lau and Polshay 

2013). In planetary science the way the moon formed after a large Earth impact 

event has been simulated in great detail (Canup 2012, Cuk and Stewart 2012). In 

neuroscience high frequency modeling of billions of neurons is now possible, 

leading to the drive for whole brain models (Markram 2006, 2012). 

Surely economics cannot be far behind. Across the social sciences people are 

utilizing ‘big data’ in a variety of ways (Lazer, et al. 2009). The time has come 

for a computational research program focused on creating economies in software 

at full scale with real economies. More than a generation ago an empirically-rich 

computational model of a specific firm was created and described by Cyert and 

March (1963) in A Behavioral Theory of the Firm. I hope the present work can 

do for the population of U.S. firms what Cyert and March accomplished for an 

individual organization. At this point we have merely scratched the surface of the 

rich intersection of large-scale agent computing and economics. 
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Appendices 

A Generalized Preference Specifications 
 The functional forms of §2 can be relaxed without altering the main 

conclusions. Consider each agent having preferences for income, I, and leisure, 

Λ, with more of each being preferred to less. Agent i's income is monotone non-

decreasing in its effort level ei as well as that of the other agents in the group, E~i. 

Its leisure is a non-decreasing function of ωi - ei. The agent's utility is thus Ui(ei; 

Ei) = Ui(I(ei; E~i), Λ(ωi -ei)), with ∂Ui/∂I > 0, ∂Ui/∂Λ > 0, and ∂I(ei; E~i)/∂ei > 0, 

∂Λ(ei)/∂ei < 0. Furthermore, assuming Ui(I = 0, .) = Ui(., Λ = 0) = 0, U is single-

peaked. Each agent selects the effort that maximizes its utility. The first-order 

condition is straightforward. From the inverse function theorem there exists a 

solution to this equation of the form !!∗ = max [0, ζ(E~i)]. From the implicit 

function theorem both ζ and  are continuous, non-increasing functions of E~i. 

Team effort equilibrium corresponds to each agent contributing its !!∗, and 

that the other agents are doing so as well, i.e., substituting !~!∗  for E~i. Since each 

!!∗ is a continuous function of E~i so is the vector of optimal efforts, e* ∈ [0, ω]N, 

a compact, convex set. By the Leray-Schauder-Tychonoff theorem an effort fixed 

point exists. Such a solution constitutes a Nash equilibrium, which is Pareto-

dominated by effort vectors having larger amounts of effort for all agents. 

 For any effort adjustment function ei(t+1) = hi(E~i(t)), such that 

!ℎ! !~!
!!~!

= !ℎ! !~!
!!!

≤ 0, 

for all j ≠ i, there exists an upper bound on firm size. Under these circumstances 

the Jacobian matrix retains the structure described in §2.3, where each row 

contains N-1 identical entries and a 0 on the diagonal. The bounds on the 

dominant eigenvalue derived in §2.3 guarantee that there exists an upper bound 

on the stable group size, as long as the previous inequality is strict, thus 

establishing the onset of instability above some critical size. 

    

� 

ei
*
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B Generalized Compensation and Nash Stability 
It was asserted in section 4 that proportional or piecemeal compensation 

breaks our basic results. What it does is dramatically reduce the incentive 

problems of team production. To see this we redo figure 1 for this compensation 

function, as shown in figure A.1 

 
Figure A.1: Dependence of !!∗ on E~i and θi for a = 1, b = 1, ωi = 10 

Note that there is no longer a region of zero effort. We next compute the Jacobian 

matrix and evaluate its elements as the size of the group increases. This is shown 

in figure A.2. 

 
Figure A.2: Dependence of the elements of the Jacobian matrix on E~i for a = 1, b = 1, and ωi = 

1, for three values of θi (0.1, 0.5, and 0.9) 

The values decline sufficiently rapidly (note the log-log coordinates) that no 

instability will be induced by the dynamical effort level adjustments of the agents 

to one another, no matter how large the group. 

 For mixtures of compensation we recover the general properties of equal 
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compensation. The way that effort, !!∗, depends on !~! and θi for f  = ½ is shown 

in figure A.2. Note the region of zero effort for agents with low preference for 

income. 

 
Figure A.3: Dependence of !!∗ on E~i and θi for a = 1, b = 1, ωi = 10 and f = 1/2 

For this mixture of compensation policies the eigenvalues of the Jacobian matrix 

can be computed numerically for various values of 

 
Figure A.4: Dependence of the elements of the Jacobian matrix on n for a = 1, b = 1, ωi = 1, f = 

½, and E~i = 100, for three values of θi (0.1 (blue), 0.5 (orange), and 0.9 (green)) 

While these values still decline as an approximate power law, they do so 

sufficiently slowly that it becomes possible to produce eigenvalues outside the 

unit circle, particularly for large n, since the matrix entries begin plateauing then. 

C Sensitivity to ‘Sticky’ Effort Adjustment 
In the base model agents adjust their effort levels to anywhere within the 

feasible range [0, ω]. A different behavioral model involves agents making only 

small changes from their current effort level each time they are activated. Think 
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of this as a kind of prevailing work ethic within the group or individual habit that 

constrains the agents to keep doing what they have been, with small changes. 

Experiments have been conducted for each agent searching over a range of 

0.10 around its current effort level: an agent working with effort ei picks its new 

effort from the range [eL, eH], where eL = max(0, ei - 0.05) and eH = min(ei + 

0.05, 1). This slows down the dynamics somewhat, yielding larger firms. This is 

because as large firms tend toward non-cooperation, this kind of sticky effort 

adjustment dampens the downhill spiral to free riding. I have also experimented 

with agents who ‘grope’ for welfare gains by randomly perturbing current effort 

levels, yielding similar results. 

D Extension: Stabilizing Effect of Agent Loyalty 
In the basic model an agent moves immediately to a new firm when its 

subjective evaluation is that it will be better off by doing so. Behaviorally, this 

seems implausible for certain kinds of workers, especially those who feel some 

loyalty to their firm. The formulation of agent loyalty used here involves agents 

not changing jobs right away, as soon as they figure out that they can do better 

elsewhere. Rather, they let χ better job opportunities arrive before separating 

from their current firm. Think of an agent’s χ as a kind of counter. It starts off 

with some value and each time the agent determines there are higher payoffs 

elsewhere but does not leave its firm the value of χ declines by 1. When χ = 0 the 

next preferable position it can find it takes and χ is reset. The base case of the 

model corresponds to no loyalty, that is, χ = 0. 

I have experimented with homogeneous and heterogeneous Λs, in the range 

from [0, 10]. Even a modest amount of loyalty reduces worker turnover and firm 

volatility, especially in large firms, and increases job tenure, firm age, and firm 

lifetime, holding other parameters constant. Increasing loyalty makes large firms 

bigger while reducing labor flows. In order to maintain the close connection of 

the model output to empirical data in the presence of agent loyalty it would be 

necessary to recalibrate the model, something reserved for future work. 
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E Extension: Hiring 
One aspect of the base model is very unrealistic: that agents can join 

whatever firms they want, as if there is no barrier to getting hired by any firm. 

The model can be made more realistic by instituting local hiring policies. 

Let us say that one agent in each firm does all hiring, perhaps the agent who 

founded the firm or the one with the most seniority. We will call this agent the 

‘boss’. A simple hiring policy has the boss compare current productivity to what 

would be generated by the addition of a new worker, assuming that no agents 

adjust their effort levels. The boss computes the minimum effort, φE/n, for a new 

hire to raise productivity as a function of a, b, β, E and n, where φ is a fraction: 

 . (A.8) 

For β = 2 this can be solved explicitly for the minimum φ necessary 

 . 

For all values of φ∗ exceeding this level the prospective worker is hired. For the 

case of a = 0, (A.8) can be solved for any value of β: ; this is 

independent of b and E. The dependence of φ∗ on β and n is show in Table A.3. 

n\β     1.0 1.5 2.0 2.5 
1 1.0 0.59 0.41 0.32 
2 1.0 0.62 0.45 0.35 
5 1.0 0.65 0.48 0.38 

10 1.0 0.66 0.49 0.39 
100 1.0 0.67 0.50 0.40 

Table A.3: Dependence of the minimum fraction of average effort on firm size, n, and increasing 
returns parameter, β 

As n increases for a given β, φ∗ increases. In the limit of large n, φ∗ equals 1/β. So 

with sufficient increasing returns the boss will hire just about any agent who 

wants a job! These results can be generalized to hiring multiple workers. 

Adding this functionality to the computational model changes the behavior of 
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individual firms and the life trajectories of individual agents but does not 

substantially alter the overall macrostatistics of the artificial economy. 

F Extension: Effort Monitoring and Worker Termination 
In the base model, shirking goes completely undetected and unpunished. 

Effort level monitoring is important in real firms, and a large literature has grown 

up studying it; see Olson (1965), the models of mutual monitoring of Varian 

(1990), Bowles and Gintis (1998), and Dong and Dow (1993), the effect of free 

exit (Dong and Dow 1993), and endowment effects (Legros and Newman 1996); 

Ostrom (1990) describes mutual monitoring in institutions of self-governance. 

 It is possible to perfectly monitor workers and fire the shirkers, but this 

breaks the model by pushing it toward static equilibrium. All real firms suffer 

from imperfect monitoring. Indeed, many real-world compensation systems can 

be interpreted as ways to manage incentive problems by substituting reward for 

supervision, from efficiency wages to profit-sharing (Bowles and Gintis 1996). 

Indeed, if incentive problems in team production were perfectly handled by 

monitoring there would be no need for corporate law (Blair and Stout 1999). 

 To introduce involuntary separations, say the residual claimant knows the 

effort of each agent and can thus determine if the firm would be better off if the 

least hard working one were let go. Analogous to hiring we have: 

  

Introducing this logic into the code there results unemployment: agents are 

terminated and do not immediately find another firm to join. Experiments with 

terminations and unemployment have been undertaken and many new issues are 

raised, so we leave full investigation of this for future work.  
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