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Abstract
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labor economics, and econometrics. The result is an updated method that retains the
insights and advantages of the original bunching and notching estimators while
incorporating covariates. In particular, we place our estimator within the econometrics
literature by showing that bunching and notching are censoring models. Once our
estimator is recast in this light, it is possible to leverage the significant econometric
developments since Tobin (1958) and to place bunching and notching on a rigorous
statistical foundation. We compare the updated and standard methods using Monte
Carlo simulations to illustrate the relative performance of recovering parameter values.
Finally, we apply our method in the context of the earned income tax credit to show it
leads to quantitatively different estimates of the compensated elasticity of reported
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1 Introduction

The goal of this paper is to enhance and improve ‘‘bunching’’ and ‘‘notching’’ estimators

developed by Saez (2010) and Kleven and Waseem (2013a). By combining insights from

public finance, labor economics, and econometrics we provide an updated method that

retains the insights and advantages of the original method while also providing a statistically

rigorous general model that allows for both ‘‘kinks’’ and ‘‘notches.’’ The public finance

literature refers to a change in the intercept of a convex piecewise-linear constraint as a

‘‘notch’’ while calling a change in the slope a ‘‘kink.’’ Similarly, the ‘‘notch point’’ is the

income level at which the intercept changes and the ‘‘kink point’’ is the income level at

which the slope changes.

We begin by presenting a general model of utility maximization with a piecewise-linear

constraint showing that it nests any public finance model with notches and kinks. The

piecewise nature of the constraint can be a result of differential tax rates, or piecewise

insurance reimbursement rates, for example. These constraints can be concave or convex

and, because they are piecewise-linear, they are fully characterized by their intercepts and

slopes. Well-known models fit into this category and include Burtless and Hausman (1978),

Saez (2010), Kleven and Waseem (2013a), Best and Kleven (2017), Einav, Finkelstein, and

Schrimpf (2017), among other.1

Using the general model, we derive the Saez (2010) elasticity bunching estimator. Saez

(2010)’s insight is that the mass of agents reporting at the kink point is increasing the

elasticity of taxable income for a given distribution of potential unobserved earning ability,

also called the latent variable. Stated another way, the more agents that shift income to the

kink point, the easier it must be to shift income. All current bunching and notching

estimators use this insight to estimate the elasticity.

Turning to identification conditions, Lemma 3.1 proves there there is no way to identify

1Similar models have also been applied to electricity, water, and cellular phone markets (Ito, 2014; Huang,
2008; Reiss and White, 2005; Olmstead, Hanemann, and Stavins, 2007).
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the elasticity if the latent distribution is completely unrestricted. In doing so, we clarify that

many existing non-parametric estimators for ε are either implicitly restricting Fn or

inconsistent for the true elasticity. We then discuss specific example restrictions on the

latent variable distribution that give point and partial identification.

Next we present our key insight which is that we can rewrite the observable income that

individuals report as a middle censoring model. Once we have linked bunching estimators to

the literature on censored models, we can formalize the assumptions necessary to identify the

structural elasticity and leverage the significant econometric developments made since Tobin

(1958). We also add richness to the model by assuming that the latent variable is a function

of some observable non-random and non-tax covariates. Extending the estimator in this way

is novel to public finance and tractable in a censoring setting but much less so in a bunching

setting. Our censoring perspective allows researchers to incorporate numerous kinks and

notches at once, which is of practical importance in many settings including piecewise

pricing.

Moving to estimation, we highlight there are many fully- and semi-parametric ways to

estimate the parameters of a middle censoring model. We discuss those and derive a simple

extension of a Heckit-style multi-step estimator that follows from Heckman (1976). All of

the estimators we discuss are transparent, straightforward, statistically rigorous, and

well-established. They are also widely implemented in statistical programs such as Stata and

Matlab.

We demonstrate the practical advantages of our estimator in the context of the earned

income tax credit (EITC) and through a Monte Carlo simulation. We use the Individual

Public Use Tax Files constructed by the U.S. Internal Revenue Service (IRS) as a repeated

annual cross-section previously used by Saez (2010). In this data, there is visual evidence of

bunching at the lowest income level. To demonstrate the importance of controlling for

covariates, we show graphically that the amount of bunching changes with observable

characteristics. Our model allows us to control for these differences.
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Estimating the elasticity of taxable income is a primary focus of public finance because it

provides evidence on how agents respond to tax and transfer programs and cannot be

directly computed from other estimates.2

Table 1 provides a detailed summary of the public finance literature that estimates the

elasticity of taxable income. This table highlights two interesting patterns. First, there is a

wide range of estimates for the elasticity, frequently anywhere between 0 and 1 with some

estimates as low as -0.83 and as high as 3 Feldstein (1995); Goolsbee (1999). Second, the

most common estimation method is an instrumental variables (IV) approach outlined by

Auten and Carroll (1999) and Gruber and Saez (2002). Subsequent papers focused on

income controls and base-year income splines to correct for challenges created by mean

reversion and changes in income inequality (Gelber, 2014). Kopczuk (2005) and Giertz

(2005) show that elasticity estimates are sensitive to these income controls. Weber (2014)

shows that the income controls are ineffective at correcting the endogeneity concerns of the

underlying model.3 These later papers demonstrate the challenges associated with IV

methods and spurred the development of new methods.

The bunching and notching methods pioneered by Saez (2010) and Kleven and Waseem

(2013b) sought to overcome the limitations of the IV and difference-in-differences methods.

Cross sectional data on income levels and piecewise linear structures in taxes and transfers

are common across not only many tax jurisdictions but in other settings as well. As such,

bunching and notching expanded the settings in which it was possible to estimate how

agents respond to change in the slope or intercept of their budget sets. Studies using these

methods have investigated poverty reducing polices like the EITC, taxes on real estate, and

corporate income. They have also been used to study welfare programs, education funding,

medical and social insurance, minimum wages, automobile fuel economy, and tiered pricing

2In one of the earlier papers estimating the elasticity of taxable income Lindsey (1987) states, ‘‘The
response of taxable income to tax rates is not the same as the response of labor supply or other real economic
factors. The response of taxable income includes, but is by no means limited to these factors. Existing
parameters on labor supply response, for example, are not applicable to the problem at hand.’’

3Weber (2014) and Blomquist and Selin (2010) provide instrumental variables that are exogenous under
testable assumptions of the degree of serial correlation.
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in cellular service. Kleven (2016) provides a review of the many ways that these methods

have been employed.

Despite the important insights, increased reliance, and numerous advantages of the

bunching estimator, recent work has discussed limitations (see, e.g., Chetty, Friedman,

Olsen, and Pistaferri, 2011; Kleven, 2016; Einav et al., 2017).4 Chetty et al. (2011) find that

micro estimates of elasticities that do not account for optimizing frictions produce biased

estimates. Kleven (2016) highlights the complication of mapping bunching to structural

parameters due to the existence of optimizing frictions in setting with both kinks and

notches. Einav et al. (2017) find large differences between estimates from traditional

bunching methods and estimates from a richer model with optimizing frictions, dynamics,

and uncertainty. The stark contrast in estimates highlights the tradeoff between,

‘‘transparency, simplicity, and speed of communication’’ with ‘‘richness of the model’’ that

more easily translates estimates into underlying economic objects. Since the seminal work by

Chetty et al. (2011) there has been an increase in awareness of the differences in elasticity

estimates by method. Chetty et al. (2011) demonstrate current bunching methods---but also

most micro methods---produce biased estimates. As a test, Chetty et al. (2011) demonstrates

that bunching elasticity estimates increase with the size of the difference in tax

rates---something that should not occur if it consistently estimates the structural elasticity.

2 Optimization subject to piecewise-linear constraints

Firms’ and individuals’ optimization problems often face piecewise-linear constraints. The

piecewise nature of the constraint can be a result of differential tax rates, piecewise

insurance reimbursement rates, or contract bonuses, for example. These constraints can be

concave or convex and, because they are piecewise-linear, they are fully characterized by

their intercepts and slopes.

4There have also been a group of recent working papers on the practical complications of using bunching
to estimate elasticities for example, Blomquist, Kumar, Liang, and Newey (2015); Patel, Seegert, and Smith
(2016); Dekker, Strohmaier, and Bosch (2016).
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The public finance literature refers to a change in the intercept of a convex

piecewise-linear constraint as a ‘‘notch’’ while calling a change in the slope a ‘‘kink.’’

Similarly, the ‘‘notch point’’ is the income level at which the intercept changes and the

‘‘kink point’’ is the income level at which the slope changes.

The following section presents a general model of utility maximization with a

piecewise-linear constraint showing that it nests any public finance model with notches and

kinks. Well-known models fit into this category and include Burtless and Hausman (1978),

Saez (2010), Kleven and Waseem (2013a), Best and Kleven (2017), Einav et al. (2017),

among others.5 This general setup also allows us to easily consider parameterizations of the

utility function that differ from the often used quasilinear and isoelastic utility. To illustrate

this point, we present an example with constant elasticity of substitution (CES) utility

subject to a piecewise-linear constraint with changes to the intercept in Appendix A.

2.1 General Model

Consider a population of agents that are heterogeneous with respect to N∗ which is

unobserved by the econometrician but known to the agent. This heterogeneity can be

interpreted as ability, health, or differential preferences, for example. Each agent maximizes

utility subject to a piecewise-linear budget constraint by jointly choosing a composite

consumption good, Ci, with a price, Pi, selling, Li at price Wi to increase resources, Yi, that

can be used to fund consumption. Li is commonly interpreted as labor supply but could also

be medical spending as in Einav et al. (2017), for example. We assume the agent takes the

price of labor, Wi, as given.

5Similar models have also been applied to electricity, water, and cellular phone markets (Ito, 2014; Huang,
2008; Reiss and White, 2005; Olmstead et al., 2007).
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Formally, the agent solves

max
Ci,Li

U (Ci, Li;N
∗
i )

s.t. Yi = WiLi (1)

Ci = S0Yi +
J∑
j

[∆Ij + ∆Sj (Yj −Dj)]1 (Yi > Dj) +Ri

The intercept of the budget constraint can change by ∆Ij at Dj and the slope can also

change by ∆Sj ≡ Sj − Sj−1 at Dj. The changes enumerated by j = 1, . . . , J encompass all

possible line segments. For example, at income level Dj , if the intercept does not change but

the slope does then, ∆Ij = 0 and ∆Sj 6= 0.

The piecewise-linear budget constraint results in an optimal choice for Li which is a

piecewise function. It is typically more difficult to observe the optimal choice for Li than to

observe Yi = WiLi and so we use the first constraint of equation (1) to write optimal Li as

Yi =


Dj N∗i ∈

[
N j, N j

]
j = 1, . . . , J

WiLi (Sj−1, N
∗
i ,∆Ij, Ri) N∗i ∈

(
N j−1, N j

)
j = 1, . . . , J + 1,

(2)

in which N0 ≡ Nmin and NJ+1 ≡ Nmax. The optimal choice takes the form of a decision rule

given by equation (2), which depends on the unobserved variable N∗i and the thresholds N j

and N j. Agents with unobserved variable N∗i outside of these thresholds report

WiLi (Sj−1, N
∗
i ,∆Ij, Ri) while agents with N∗i inside these bounds set Li such that optimal

Yi is equal to the discontinuity point Dj.

2.2 Examples from applied microeconomics

Equations (1) and (2) may appear unfamiliar so in the following section we show that these

expressions nest well-known models from the labor and public finance literatures.
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2.2.1 Quasi-linear and isoelastic Utility with only Slope Changes

The public finance literature often uses utility that is quasilinear in Ci and isoelastic with

elasticity ε in Li combined with a budget constraint that only has slope, and not intercept,

changes. The general model in (1) and (2) becomes particularly tractable in this setting. In

fact, we show in Appendix A that in this case, both the choice of Yi and the thresholds N j

and N j in equation (2) are log-linear functions of the elasticity ε, the slope changes in logs

sj, and the latent variable Ni for any number of J kink points.

To make the model in equations (1) and (2) abundantly clear, we relate them to the

seminal work of Saez (2010) by considering the agent’s problem written as

max
Ci,Li

Ci − (N∗i )−1/ε L
1+ 1

ε
i

1 + 1/ε

s.t. Yi = Li (3)

Ci = (1− t0)Yi + (t0 − t1) (Yj −Dj)1 (Yi > Dj) .

Our model nests Saez (2010) when Pi = Wi = 1, Yi = z is taxable income, the slopes are the

net-of-tax rates, Sj = 1− tj, and heterogeneity N∗i = n is interpreted as a distribution of

potential earnings ability.

As shown in the general model, the optimal labor supply choice resulting in income, Yi,

reported by agent i is a piecewise function and depends on the value of the unobserved

heterogeneity variable N∗i and is given by

yi =


n∗i + εs0 n∗i < n1

d1 n∗i ∈ [n1, n1]

n∗i + εs1 n∗i > n1

(4)

in which we use lower case letters to denote logs, for example, sj ≡ lnSj ≡ ln (1− tj),

yi ≡ ln (Yi), and d1 ≡ ln (D1). Because there is only one change in the slope S1 = S0 + ∆S1.
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As discussed previously and shown in Appendix A, all models with isoelasticity utility and

only slope changes in the budget constraint result in optimal reporting of income that is

piecewise log-linear. In that setting, we know that n1 = d1 − εs0 and n1 = d1 − εs1.

The thresholds, n and n define the lowest and highest abilities that bunch at the

discontinuity. Consider a geometrical interpretation of this equation. When the budget

constraint has only slope changes, the thresholds are defined by indifference curves that are

tangent to the budget constraint at each discontinuity Dj. For example, the indifference

curve of ability nj is tangent to the budget constraint at Dj using the slope below Dj and

the indifference curve for ability nj is tangent using the slope above the kink Dj.

There are several other examples of quasilinear and isoelastic utility with one change in

the budget constraint’s slope similar to the model of (3) with slightly different notation.

Burtless and Hausman (1978) consider labor supply of hours worked, Yi = hi, with the slopes

being the net-of-tax wages Sj = (1− tj)w, and heterogeneity N∗i = ki. Recently, Einav et al.

(2017) uses this model with demand over total drug spending, Yi = m, with slope equal to

the net-of-insurance costs given by S = (2− c) and heterogeneity in an individual’s health

needs, N∗i = ξ.

3 Inferences of parameters

Next we derive the bunching estimator to recover parameters of the utility function using

observations of individuals’ optimizing behavior characterized by equation (2). Assume that

the latent heterogeneity variable N∗i is distributed according to some probability density

function (PDF) given by gN (N∗i ) with cumulative distribution function (CDF) GN (N∗i ).

Based on equation (2), all agents with the latent variable N∗i ∈ [N j, N j] report Y = Dj and

the mass of agents at Dj is

Bj = P (Yi = Dj) = P
(
N j ≤ N∗i ≤ N j

)
=

∫ Nj

Nj

gN (N∗) dN∗ = GN

(
N j

)
−GN

(
N j

)
. (5)
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Using the specific example from equation (4), the mass at D1 given by (5), becomes

BSaez = Fn (n1)− Fn (n1) = Fn (d1 − ε ln (1− t1))− Fn (d1 − ε ln (1− t0)) , (6)

in which we have used a change of variables to move from the distribution of the level of the

latent variable GN (N∗) to the distribution of its logarithm n∗ = ln (N∗) with CDF Fn (n∗)

and PDF fn (n∗). In appendix B, we prove that equation (6) is exactly (Saez, 2010, equation

(4), p. 186) which he used to identify the elasticity.

3.1 Non-parametric identification of the elasticity

Saez (2010)’s insight is that the mass of agents bunching in equation (6), BSaez, is increasing

in the elasticity ε for a given distribution of the latent variable Fn. Stated another way, the

more agents that shift income to the kink-point d1, the easier it must be to shift income. All

current bunching and notching estimators use this insight to estimate the elasticity.

An alternative interpretation of equation (6) is also possible, however. The mass of

agents bunching, BSaez, is increasing as Fn becomes more concentrated between n1 and n1

for a given elasticity ε. In other words, if more individuals happen to be distributed in

[n1, n1] because of the shape of Fn, more of them will move to the kink point for any given

elasticity. Patel et al. (2016) demonstrate this empirically by showing that bunching

estimates of ε are indeed sensitive to assumptions about the latent distribution.

The following section demonstrates there is no way to simultaneously estimate both the

elasticity and distribution of the latent variable together using only equation (5) if the latent

distribution is completely unrestricted. Intuitively, identification using only one equation to

solve for two unknowns, ε and Fn, is impossible.
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3.1.1 The elasticity is unidentified without latent variable restrictions

The data and model comprise five objects, (1) the distribution of earnings, Fy, (2) the kink

point, d1, (3) the slopes of the piecewise linear constraint, s = (s0, s1), (4) the CDF of the

latent variable, Fn, and (5) the elasticity, ε.

The agents observe the latter four objects and report optimal income according to

equation (4) taking them as given. The resulting CDF of optimal incomes across agents, Fy,

can be constructed from equation (4) and is a mapping, Fy = T (Fn, ε, d1, s0, s1), from the

objects the agents take as given to the observable income distribution. Inspecting equation

(4), the distribution of y has a mass point at d1 but it is otherwise continuous with PDF fy.

The researcher observes the first three of these five objects but does not observe the last

two, Fn and ε. The problem of identification consists of inverting the mapping T such that

the unobserved ε is a function that only depends on the three observed objects (Fy, d1, s)

regardless of what Fn may be. We denote the class of admissible distributions of n as Fn. If

the class Fn contains all possible continuous distributions of n, then identification of ε is

impossible.

Lemma 3.1. Let Fn be the class of all CDFs Fn that have continuous PDFs fn with

support (−∞,∞). Let Fy be the class of all CDFs Fy that are mixed continuous-discrete

with one mass point at d1 and continuous PDFs fy otherwise. Assume that ε ∈ (0,∞),

−∞ < s1 < s0 ≤ 0, and fix arbitrary values of Fy, d1, s0, and s1. Then, there does not

exist a unique ε such that

Fy = T (Fn, ε, d1, s0, s1) ∀Fn ∈ Fn.

Therefore, it is impossible to retrieve a unique ε just using (Fy, d1, s0, s1).

Proof. See Appendix C.1 as illustrated in Figure 1.

Figure 1 provides intuition for the proof of Lemma 3.1. It illustrates that the observable
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PDF fy in Figure 1a can be generated by applying (4) to two different combinations of

latent variables distributions and elasticities, fn,ε and fn,ε′ in Figures 1b and 1c, respectively.

We developed Lemma 3.1 independently of and a month before we were aware of Blomquist

and Newey (2017) which also shows that, as the title of their paper suggests, ‘‘The Bunching

Estimator Cannot Identify the Taxable Income Elasticity.’’

3.2 Examples of identifying restrictions

Lemma 3.1 clarifies that many existing non-parametric estimators for ε are either implicitly

restricting Fn or inconsistent for the true elasticity. A direct consequence of Lemma 3.1 is

that it is impossible to evaluate the quality of different restrictions on Fn and how close they

are to the truth. Below we consider a few examples of identifying restrictions.

Example 1. Restrict Fn such that fn is equal to a specific function inside the interval

[n1, n1]. This is the approach used by Saez (2010). He assumes fN is a linear function

within [D1/(1− t0)ε, D1/(1− t1)ε]. That assumption is equivalent to an exponential shape

on fn, the PDF of n = ln (N), within [n1, n1]. Under this linearity restriction, the

trapezoidal approximation utilized by Saez (2010) holds exactly and the elasticity ε is

identified as the solution of his Equation (5).

One may argue that the linear assumption is a good approximation to any potentially

non-linear true density fN in the neighborhood of the kink point if the interval

[D1/(1− t0)ε, D1/(1− t1)ε] is small. The problem with this argument is that the size of the

interval is itself a function of the elasticity. It is impossible to state that the interval is small,

and the linear approximation is a good one, without a priori knowledge of the elasticity.

There are more general restrictions one could impose on fn. For example, one could say

n follows a distribution inside a parametric family of distributions.

Example 2. Restrict Fn to be a parametric class of distributions. This is the approach

used by Chetty et al. (2011). In general, let Fn = {Fn = Fθ , θ ∈ Θ} where Fθ are CDFs
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indexed by a parameter θ, Θ ⊆ Rp is the parameter space, and p is a positive integer.

Jointly solving (7), (8), (9) for ε as a function of d1, s0, and s1 identifies the elasticity.

P[y = d1] = Fn (d1 − εs1)− Fn (d1 − εs0) (7)

Fy(u) = Fn(u− εs0) for u < d1 (8)

Fy(u) = Fn(u− εs1) for u > d1. (9)

For example, if Fn is assumed to be the family of normal distributions with unknown

mean and variance, the elasticity is identified. Section C.3 in the Appendix illustrates how to

verify Equations (7), (8), (9) for the normal case.

Chetty et al. (2011) assume a flexible polynomial functional form for fy, and that this

same parametric functional form also holds for fn up to a shift in location as seen in

Equations (8) and (9). It is important to emphasize this is not a non-parametric

identification strategy for ε. There is an implicit parametric assumption made on fn within

[n1, n1]. Although fy is non-parametrically identified, Lemma 3.1 makes clear that fn is not

non-parametrically identified within [n1, n1].

Thus far we have considered parametric restrictions on the class of distributions Fn that

yield point identification of ε. It is possible to impose even weaker restrictions on Fn and

obtain partial identification of ε. Restricting the class Fn to satisfy some shape restrictions

yields partial identification. One such restriction is to assume the PDF fn is continuous and

has slope magnitude bounded by an a priori selected value M ∈ (0,∞). Equations (8) and

(9) reveal that fy is equal to fn up to a shift in location. The researcher may observe fy to

get an idea of the value of M .

The following theorem gives the partially identified set for ε as a function of identified

quantities and the maximum slope magnitude M .

Theorem 3. Assume Fn contains all distributions with continuous PDF fn such that the
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maximum slope magnitude of fn is M ∈ (0,∞). Then, the elasticity ε ∈ Υ where

Υ =


∅ , if P[y = d1] <

|f(d+1 )−f(d−1 )| [f(d+1 )+f(d−1 )]
2M

[ε, ε] , if
|f(d+1 )−f(d−1 )| [f(d+1 )+f(d−1 )]

2M
≤ P[y = d1] <

f(d+1 )2+f(d−1 )2

2M

[ε,∞) , if
f(d+1 )2+f(d−1 )2

2M
≤ P[y = d1]

where ∅ is the empty set, and

ε =
2
[
f(d+

1 )2/2 + f(d−1 )2/2 +M P[y = d1]
]1/2 − (f(d+

1 ) + f(d−1 )
)

M(s0 − s1)

ε =
−2
[
f(d+

1 )2/2 + f(d−1 )2/2−M P[y = d1]
]1/2

+
(
f(d+

1 ) + f(d−1 )
)

M(s0 − s1)

For the proof see Section C.4 in the Appendix.

In practice, a budget set may display several points where bunching occurs. On the one

hand, the income distribution may be very different across different bunching points. On the

other hand, the elasticity ε is assumed to be the same for all individuals. Variation in

probability of bunching, tax rates and PDF values narrow down the partially indentified set.

Variation could arise from one or multiple time periods.

Corollary 3.1. Suppose the researcher observes a budget set with K kinks P[y = dj],

fy(d
+
j ), fy(d

−
j ) for j = 1, . . . , K along with tax prices s0, s1, . . . , sK. Assume the conditions

of Theorem 3. Then, the elasticity ε ∈
⋂K
j=1 Υj where Υj is the partially identified set of

Theorem 3 for kink j.

Corollary 3.1 shows that variation arising from multiple kinks in one budget set or from

budget sets at different time periods helps identify the elasticity ε without a parametric

assumption on Fn. Blomquist and Newey (2002) assume a population variation of budget

sets to identify elasticities non-parametrically. Their result rely on an identification

condition that could be hard to verify in practice. Corollary 3.1 constitutes a straightforward

approach for practitioners because it produces the narrowest partially identified set given
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whatever variation the researcher has at hand. This variation could be little or none, or

could be close to satisfying the identification condition of Blomquist and Newey (2002).

3.3 Identification with Covariates

Up to this point, we have only considered the general distribution of n∗. Here we show that

if that distribution depends on other covariates, the effect of those covariates must be

estimated simultaneously along with the estimate of ε. Consideration of covariates is related

to another crucial assumption of Saez (2010) which is that the unobserved variable N∗i is

identically distributed across all agents. To see how this is related to identifying the

elasticity, consider the possibility that the heterogeneous factor is a function of some

observable covariates xi and zi in addition to a completely random characteristics with CDF

Fν(νi) given by N∗i = N∗i (xi, zi, νi; θ). A simple example of this function would be

N∗i = exp (x′iβ + z′iγ + νi). Ensure that xi includes a constant term and denote the

standardized distribution of νi as Φν(νi). In this setting, the mass at the kink varies by

individual and the analog to (6) is given by

BSaez
i = Φν

(
z∗ − ε ln (1− t1)− x′iβ − z′iγ

σν

)
− Φn

(
z∗ − ε ln (1− t0)− x′iβ − z′iγ

σν

)
. (10)

We can state this point in another way. The first fundamental insight of Saez (2010) is

that a larger elasticity results in a larger mass at the kink. Here we have an example which

shows that a larger β can also result in a larger mass at the kink when β > 0 and xi > 0.

Conversely, a more negative conditional mean results in a smaller mass at the kink.

The probability that an individual reports income at the kink depends systematically on

determinants of their potential earning ability and differs for each individual. The number of

bunching masses at the kink conditional on covariates is now equal to the size of the sample

of individuals and there is no such thing as ‘‘the’’ mass at the kink. Much of labor economics

has taught us that there are many plausible observable covariates that effect potential
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earnings. These must be controlled for in any specification that seeks to estimate the

response of all individuals to a change in marginal tax rates. Examples of plausible

determinants of income are years of work history, years of education, U.S. state of residence,

gender, and number of children, among others. In the following data section, we provide

evidence that covariates do in fact lead to systematic differences in earnings potential and

therefore probabilities of reporting income at the kink that differ systematically across

individuals.

4 Parametric and semi-parametric estimation

The econometrics literature promises a way to estimate the agents’ preferences parameters

that overcomes the limitations of the bunching methods discussed previously. In particular,

the data generating process described in equation (2) is a type of censoring model. Censoring

models are typically discussed as having a mass point at the upper or lower end of the

distribution, leading to an upper or lower censored model, respectively. The model proposed

in equation (2) has instead a mass point that lies in the middle of the distribution.

Recasting the model as middle censoring allows us to leverage the significant econometric

developments since Tobin (1958) and to place both bunching and notching estimators on a

rigorous statistical foundation.

As we did before, assume that the latent heterogeneity variable N∗i is distributed

according to some probability density given by gN (N∗i ) with cumulative distribution

function GN (N∗i ). We can derive the likelihood for the model in equation (2) which is

L (Y,W, S,R | θ) =

N∏
i=1

J∏
j=1

gN

(
L−1i

(
Yi
Wi

, Sj−1, Ri

))1(WiLi(Sj−1,Nj ,Ri)<Yi<WiLi(Sj−1,Nj−1,Ri))

×
[
GN

(
N j

)
−GN

(
N j

)]1(Yi=Dj)
(11)

in which we inverted L−1
i

(
Yi
Wi

, Sj−1, Ri

)
= N∗i .

Equation (11) is difficult to understand intuitively so we also present the likelihood

function corresponding to the simpler model of equation (4). We also add the additional
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assumption that the heterogeneous factor is a function of some observable covariates xi and

zi in addition to a completely random characteristics with CDF Fν(νi) given by

N∗i = exp (x′iβ + z′iγ + νi). Ensure that xi includes a constant term and denote the

standardized CDF of νi as Φν(νi) with PDF φn

L (y, x, z | ε, β, γ, σν) =

N∏
i=1

φν

(
yi − ε ln (1− t0)− x′iβ − z′iγ

σν

)1(yi<d1)

×
[
Φν

(
d1 − ε ln (1− t1)− x′iβ − z′iγ

σν

)
− Φν

(
d1 − ε ln (1− t0)− x′iβ − z′iγ

σν

)]1(yi=d1)
× φν

(
yi − ε ln (1− t1)− x′iβ − z′iγ

σν

)1(yi>d1)

(12)

4.1 Parametric estimation

If we assume that φν in (12) is a normal distribution, this becomes a middle censored Tobit

type 1 model after Tobin (1958). Extending to multiple kink points with a normally

distributed latent variable would lead to a mixed ordered probit model with level equations

in each ordered region of the domain. Adding a second normal error term to the level of

income being reported makes this a Tobit type 2 developed by Gronau (1973). The model

could also be extended to the Tobit type 3 Heckman (1974), Tobit type 4 Nelson and Olson

(1978), or Tobit type 5 Heckman (1978) models. Surveys of censoring models and their

applications are provided by Maddala (1983), Amemiya (1984), Dhrymes (1986) Long

(1997), DeMaris (2005), and Greene (2005)

Because parametric censoring models have been studied for many decades, estimation of

the parameters of the model could proceed using any number of different techniques. Among

these methods are Maximum Likelihood Estimation (MLE) via gradient ascent or the

expectation maximization algorithm (Ruud, 1991). The parameters could also be estimated

using Bayesian methods or the Method of Simulated Moments (MSM). In more restrictive

cases, by assuming φν is normal, for example, it is possible to develop a Heckit-style

multi-step estimators similar to Heckman (1976).



17 BERTANHA, MCCALLUM, AND SEEGERT: BETTER BUNCHING, NICER NOTCHING

A Heckit-style estimator based on the model in (12) is particularly appealing and so we

derive those steps explicitly in Appendix D. Intuitively, the first step relies on estimating a

probit model for observations above and below the kink. Constructing the inverse mills ratio

from that first step and including it as covariate in the second step allows consistent

estimation of the parameters determining the level of reported income. Finally, the elasticity

ε can be recovered from a linear combination of the parameters estimated in the second step.

Other, context specific, parametric structural models also provide potential ways to

consistently estimate the elasticity of taxable income with examples from Einav, Finkelstein,

and Schrimpf (2015) and Einav et al. (2017). The advantages of structural models are

explored in recent papers Chetty (2009); Angrist and Pischke (2010); Deaton (2010);

Heckman (2010); Imbens (2010) and Keane (2010). For a longer discussion of structural

models in public finance see the excellent summary by Thoresen and Vattø (2015).

Structural models rely on strong assumptions, particularly about the distributions of

unobservables. We have shown that any method that point identifies the elasticity will

necessarily make some parametric restrictions. This should attenuate the precived cost of

using structural models. It should also emphasizes the importance of tests of external

validity. To this end, several papers have made progress combining structural labor supply

models and experimental evidence (Brewer, Duncan, Shephard, and Suarez, 2006; Pronzato,

2012; Geyer, Haan, and Wrohlich, 2015). Since being developed at least in the early 1980s

there also tests of the parametric assumptions made for the error term in censoring models

(Nelson, 1981).

4.2 Semi-parametric estimation

If the parametric assumptions are true, the most efficient way of estimating the elasticity is

with MLE.6 Trading fewer restrictions for less potential efficiency in a semi-parametric

setting, could still be desireable.

6There is some evidence that prior concerns about the assumptions inherent in MLE in a censoring context
are less severe than previously thought (Evers, De Mooij, and Van Vuuren, 2008).
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Censoring models that relax strict assumptions on the distributions of the error terms

necessary for MLE and related methods have been developed. Most of those also focus on

upper and lower, instead of middle, censoring but adapting to middle censoring is

straightforward. Another reason to commend their use is that standard statistical programs

include code that implements them. (Pagan and Ullah, 1999, ch. 9) provide a nice outline of

methods that were developed up to the late 1990s and there has been significant progress on

semi-parametric extensions since that time.

Extending the Heckit-style estimator to a semi-parametric setting by following the

control function estimation approaches is also possible. Instead of estimating a parametric

binary outcome model in the first step, that step would estimate a semi-parametric binary

model. That could be accomplished using a kernel or series estimator following insights by

Powell (1987), Newey (1988), and Ahn and Powell (1993). The second step would include

the semi-parametric equivalent of the inverse mills ratio as a control. These methods are

more flexible than but are limited to estimating the first moment of the conditional income

distribution. While that limitation does not affect the estimation of an elasticity, it does

limit potential counterfactual analysis that rely on higher moments.

5 Application to EITC

5.1 Data

In order to emphasize the practical implications of our perspective, we employ the data

originally used by Saez (2010) and replicate his results using code from the AER website.

Those data are from the Individual Public Use Tax Files constructed by the IRS. The

annual cross section for each year 1995 to 2004 includes sampling weights which allow

interpretation of any estimates as being based on the population of U.S. income tax returns.
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5.2 Graphical Evidence on the Importance of Covariates

Figure 2 graphs the income distribution for individuals with one child (Panel A) and two or

more children (Panel B) and replicates Figure 3 from Saez (2010). These panels demonstrate

clear bunching at the first kink point denoted by a red vertical line. The elasticity of taxable

income with respect to the tax schedule is likely not zero given the mass in the distribution

at the kink point.

Figures 3a through 6b graph the income distributions for individuals with one child in

several subsamples to demonstrate that non-random and non-tax determinants change the

likelihood an individual is observed at the lowest kink point which is $8580 in year 2008

dollars.

Figures 3a and 3b graph the income distribution for U.S. states with the lowest and

highest average incomes which are Montana and Colorado, respectively. A mass point at the

lowest kink point is observable for Montana but not for Colorado. This difference suggests

that the state of residence is an important determinant for the probability that an individual

is in the region [n1, n1].

Figures 4a and 4b graph the income distributions of individuals that do and do not

itemize their deductions. The income distributions of these two groups differs greatly.

Compared to those that itemize deductions, a much higher proportion of individuals that do

not itemize deductions have income near the first kink point. These figures stand in contrast

to what theory might suggest because itemizers should have more opportunities to shift

income, have a higher elasticity, and be more likely to be observed at the kink point.

Figures 5a and 5b graph the income distributions for individuals that are and are not

self-employed. Saez (2010) made the intuitively appealing point that the mass at the kink

point, and therefore the elasticity, for the self-employed is much larger than the mass for

those who are not self-employed.

Figures 6a and 6b, however, allow an alternative explanation. Those figures show the

income distributions for individuals that are self-employed and itemize compared to
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individuals who are self-employed and do not itemize. Theory would suggest that

self-employed--itemizers have ample opportunities to shift income, yet there is little mass at

the lowest kink point in the data. On the other hand, self-employed--non-itemizers pile up at

the lowest kink point.

Together these figures demonstrate that covariates like state dummies, itemizing

deductions, and self-employment status affect the likelihood that an individual has

unobserved ability in the region that induces them to report income at the kink point. Saez

(2010), and many others, try to control for this by estimating the elasticity separately for

different subsamples. Using subsamples is a tried and true way to control for observable

differences in econometrics. There are practical complications of using subsamples, however.

These complications include estimating many elasticities (one for each state, for example),

choosing how to define subsamples--including interaction terms, and the reduction in

statistical precision caused by using smaller datasets. Finally, relying on subsamples makes

an estimated elasticity less valuable for informing policy because the ideal estimator might

seek to capture the average response of a hypothetical taxpayer to a change in the tax rate.

6 Conclusion

This paper has formalized bunching within the econometrics literature. Doing so has shown

that elasticities cannot be identified using data locally around notch or kink points in budget

constraints and without parametric restrictions. The insights from Saez (2010) and Kleven

and Waseem (2013a), however, can be extended to a censoring setting. Extending bunching

to these contexts provides several advanced methods to consistently estimate elasticities. In

particular, we demonstrate the importance of including covariates.

Additional research is needed to estimate the elasticity of taxable income using

maximum likelihood and control function methods. These estimates will hopefully inform

the literature on the appropriate parametric restrictions.

Missing in this discussion is the role of frictions, which observationally are an important
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feature. Chetty et al. (2011) advocate estimating a structural model of labor supply with

frictions to identify the structural elasticity relevant for policy. Advances in the labor

literature on discrete choice models offer potential solutions (Van Soest, 1995; Hoynes, 1996;

Creedy and Kalb, 2005; Thoresen and Vattø, 2015).
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Figure 1: Non-identification of ε

(a) Density and Probability Mass of an Observed Distribution Fy

(b) Density of a distribution Fn,ε that is consistent with Fy along with ε

(c) Density of a distribution Fn,ε′ that is consistent with Fy along with ε′ < ε

Notes: This figure illustrates two different distributions of n, Fn,ε and Fn,ε′ , that generate the same
distribution Fy according to Equation (4) for two different values of the elasticity ε > ε′. The hatched area is
the mass probability of bunching P(y = d1). The shape of the left and right tails of 1b and 1c are identified
up to location from the continuous part of 1a. The PDF of n in the hatched area is denoted φ. The function
φ and its support are unknown except that φ integrates to P(y = d1).
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Figure 2
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Note: Figure 2 replicates Figure 3 from Saez (2010). Each panel displays the histogram
of earnings (by $500 bins) for tax filers by the number of dependent children for the years
1995 to 2004. Earnings are inflated to 2008 dollars using the IRS inflation parameters
and are defined as wages and salaries plus self-employment income (net of one-half of the
self-employed payroll tax). The EITC schedule is depicted with a dashed black line and the
three kinks are depicted with vertical red lines. Panel A above includes 58,095 observations
representing 116.3 million tax returns compared to the 57,692 observations from Saez (2010).
Panel B above includes 67,426 observations representing 115.4 million tax returns compared
to the 67,038 observations in the original.
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Figure 3: The distribution of income across U.S. States
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Figure 4: The distribution of income by itemization status
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Figure 5: The distribution of income for employees or self-employed
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Figure 6: The distribution of income for interacted covariates

(a) One Child Self-employed and Itemize
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Figure 7: Actual and simulated income distributions

Note: Figure 7 replicates Figure 3A from Saez (2010). The top panel displays the histogram of
earnings (by $100 bins) for tax filers for the years 1995 to 2004 and includes 58,095 unweighted
observations. Earnings are inflated to 2008 dollars using the IRS inflation parameters and
are defined as wages and salaries plus self-employment income (net of one-half of the self-
employed payroll tax). Panel B above includes 59,783 simulated observations based on a
truncated Tobit 1 model with the tax elasticity, ε = 0.075, the optimizing friction standard
deviation, σξ = 0.007, the standard deviation of ability, σζ = 1.4 and the mean of ability
conditional on parameters and covariates estimated for each individual.
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Figure 8: Elasticity Estimates as the Window Increases
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Note: This figure uses the Saez (2010) code to estimate the elasticity using data that is
simulated to look like the actual EITC data. The simulated data includes 59,783 simulated
observations based on a truncated Tobit 1 model with the tax elasticity, ε = 0.075, the
optimizing friction standard deviation, σξ = 0.007, the standard deviation of ability, σζ = 1.4
and the mean of ability conditional on parameters and covariates estimated for each individual.
The horizontal axis gives different values of δ, which represents the window around the kink
point used to estimate the amount of bunching.
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Table 1: Estimates of the Elasticity of Taxable Income 1/2

Study Years Data Method Estimates

Lindsey (1987) 1981 ERTA Tax returns (IRS), public Dif-in-Dif (1, 3)

Feldstein (1995) 1986 TRA Tax returns (IRS), public Dif-in-Dif (1, 3)

Auten and Carroll (1999) 1985--1989 Tax returns (IRS), confidential IV 0.57

Goolsbee (1999) 1920--1966 Statistics of Income (SOI) Dif-in-Dif (-0.83, 0.59)

Moffitt and Wilhelm (2000) 1983 and 1989 Survey of Consumer Finances (SCF) Dif-in-Dif (1.76, 1.99)

Moffitt and Wilhelm (2000) 1983 and 1989 Survey of Consumer Finances (SCF) IV (0.35, 0.97)

Aarbu and Thoresen (2001) 1991--1994 Statistics Norway’s Income Distribution Survey IV (-0.6, 0.2)

Sillamaa and Veall (2001) 1986--1989 Statistics Canada Longitudinal Administrative Database IV 0.25

Selén (2002) 1990--1995 household income survey (HINK) Statistics of Sweden Dif-in-Dif (0.2, 0.4)

Gruber and Saez (2002) 1979--1990 Panel, public-use IV 0.4

Saez (2003) 1979--1981 Continuous Work History File (IRS) IV using bracket creep (0.2, 0.7)

Saez (2004) 1960--2000 Tax returns (IRS) Time-series regression 0.2

Kopczuk (2005) 1979--1990 Michigan Tax Panel IV (0.2, 0.57)
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Table 2: Estimates of the Elasticity of Taxable Income 2/2

Study Years Data Method Estimates
Giertz (2007) 1979--2001 Continuous Work History File (IRS) IV (0.26, 0.40)

Hansson (2007) 1989--1992 Longitudinell individdatabas (Sweden) IV (0.4, 0.5)

Holmlund and Söderström (2008) 1991--2002 Longitudinal Individual Dataset for Sweden IV (0.1, 0.3)

Auten, Carroll, and Gee (2008) 1999--2005 Tax Returns, Statistics of Income IV 0.4

Heim (2009) 1999--2005 Tax Returns, 1999--2005 Edited Panel IV (0.3, 0.4)

Blomquist and Selin (2010) 1981--1991 Swedish Level of Living Survey IV 0.21

Singleton (2011) 2002--2003 Current Population Survey lined to W-2 records IV (0.217, 0.304)

Kopczuk (2012) 2002--2005 Tax Return, Polish Ministry of Finance IV 1

Gelber, Jones, and Sacks (2013) 1961--2006 Social Security Bunching---updated 0.23

Kleven and Waseem (2013b) 2006--2008 Federal Board of Revenue in Pakiston Bunching, notches (0.07, 0.24)

Gelber (2014) 1988--1991 Longitudinal Individual Dataset for Sweden IV (0.41, 0.47)

Weber (2014) 1982--1990 Michigan IRS Tax Panel data IV updated 1.046

Kleven and Schultz (2014) 1984--2005 Statistics Denmark Dif-in-Dif (0.2, 0.3)

Doerrenberg, Peichl, and Siegloch (2015) 2001--2008 German Taxpayer Panel IV updated (0.34, 0.68)



37 BERTANHA, MCCALLUM, AND SEEGERT: BETTER BUNCHING, NICER NOTCHING

A Utility maximization details

This section begins with an iso-elastic and quasi-linear utility and derives the piecewise
demand function when the budget constraint includes kinks and notches. The demand with
a kink is reported in the text in example 1. The demand with the notch is not reported in
the text and, as we demonstrate, is the demand from Kleven and Waseem (2013a). This
section then derives the piecewise demand for a constant elasticity of substitution utility
when the budget constraint includes kinks and notches. The demand with a notch is
reported in the text in example 2.

A.1 Iso-Elastic and quasilinear Utility

Agents maximize their iso-elastic and quasi-linear utility subject to their budget constraint
with discontinuities,

max
Ci,Li

Ci − (N∗i )−1/ε L
1+ 1

ε
i

1 + 1/ε

s.t. Yi = Li (13)

Ci = S0Yi +
J∑
j

[∆Ij + ∆Sj (Yj −Dj)]1 (Yi > Dj)

The budget constraint allows for a piecewise function where the slope changes by
∆Sj ≡ Sj − Sj−1 and the intercept can change ∆Ij, often called notches. A proportional
notch, as defined by Kleven and Waseem (2013a), is where above the discontinuity there is
an additional proportional tax on the entire value of Yi. In our model, a proportional notch
is given by ∆Sj < 0 and ∆Ij = ∆SjDj. For example, if a property sale price, Yi is under
$1,000,000 the seller does not face a surtax and prices above $1,000,0000 are subject to a 10
percent surtax 0.1 ∗ Yi. In our model this is given by ∆Sj > −.1 and
∆Ij = −.1 ∗ 1, 000, 000 = −100, 000.

To better understand the budget constraint, we can rewrite the budget constraint
assuming that Yi > D1 and Yi < D2, and ∆Ij = 0 ∀j,

Ci = I + S0Yi +
J∑
j=1

[∆Ij + ∆Sj(Yi −Dj)]1(Yi > Dj)

= I + S0Yi + (∆I1 + (S1 − S0)(Yi −D1))1(Yi > D1)

= I + (S0 − S0 + S1)Yi − (S1 − S0)D1

= I + S1Yi − (S1 − S0)D1

From this expression, it is clear that the budget constraint can be written as the price in the
relevant piece of the budget constraint times the demand Yi minus a constant term equal to
the difference in prices multiplied by the discontinuity level, D1. This provides the intuition
for the derived demand as a function of only the price in the relevant piece of the budget
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constraint. Specifically, the first-order condition is given by,

∂u(Yi)

∂Yi
=
∂Ci(Yi)

∂Yi
−
(
Yi
N∗i

)1/ε

= Sj −
(
Yi
N∗i

)1/ε

.

The log of demand, denoted yi ≡ log(Yi), is a piecewise function of the log of the
heterogeneity variable ni ≡ lnN∗i , and the log of the price, sj ≡ lnSj,

yi =

{
dj if ni ∈ [nj, nj] for j = 1, ..., J

ni + εpj−1 if ni ∈ [nj−1, nj] for j = 1, ..., J + 1

where dj ≡ lnDj, n0 ≡ −∞, and nJ+1 ≡ ∞.

A.1.1 Kink

With a concave kink discontinuity, some agents decrease their Y, such that some mass bunch
at the discontinuity. The agents that bunch at discontinuity Dj are those with
N∗i ∈ [N j, N j]. When the discontinuity is a kink, the thresholds are determined by noting
that the lowest N∗i that bunches, N chooses Yi = Dj, with the price Sj−1 and the highest
N∗i that bunches, N chooses Yi = Dj, with the price Sj. This implies Dj = NSεj−1 and

Dj = NSεj , and thus N = DjS
−ε
j−1 and N = DjS

−ε
j .

A.1.2 Notches

The lowest type of agent that bunches at the notch, denoted by N1, has an indifference
curve that is tangent to the budget constraint at the notch. The highest type of agent that
bunches at the notch, denoted by N, has an indifference curve that intersects the budget
constraint at the notch and is tangent to the budget constraint right of the notch. These
thresholds can be written as,

N j = DjS
−ε
j−1

N j =
∆I(1 + ε)S−1−ε

j−1

εγ1+1/ε − γ(1 + ε) + S1+ε
j S−1−ε

j−1
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where γ = N/N. To derive N, we set the utility at the notch, Y = Dj = NSεj−1, and to the

right of the notch, Y = SεjN, equal for this agent.

Sj−1Dj − (1 + 1/ε)−1N
−1/ε

j D
1+1/ε
j = SjS

ε
jN j − (1 + 1/ε)−1N

−1/ε

j (SεjN j)
1+1/ε −∆I

Sj−1Dj − (1 + 1/ε)−1N
−1/ε

j D
1+1/ε
j = S1+ε

j N j − (1 + 1/ε)−1N jS
1+ε
j −∆I

N jS
1+ε
j−1 − (1 + 1/ε)−1N

−1/ε

j N
1+1/ε
j S1+ε

j−1 = (1 + ε)−1N jS
1+ε
j −∆I

N j[(1 + 1/ε)−1S1+ε
j−1γ

1+1/ε − S1+ε
j−1γ + (1 + ε)−1S1+ε

j ] = ∆I

N j[εγ
1+1/ε − γ(1 + ε) + S1+ε

j S−1−ε
j−1 ] = ∆I(1 + ε)S−1−ε

j−1

N j =
∆I(1 + ε)S−1−ε

j−1

εγ1+1/ε − γ(1 + ε) + S1+ε
j S−1−ε

j−1

These expressions demonstrate several important characteristics about notches. First,
the lower threshold in the notch case is exactly the same as in the kink case. Second, the
upper threshold, however, differs. In particular the penultimate line shows that when
∆Ij = 0 then γ = 1 and N = N.

Example Kleven and Waseem (2013a)
In this example we derive the same equation as equation (5) of Kleven and Waseem
(2013a). To do this, we note that N = Dj(1 + ∆Y/Dj)S

−ε
j−1 and γ ≡ N/N, can

write as 1/(1 + ∆Y/Dj) to match the notation in Kleven and Waseem (2013a).7

N [εγ1+1/ε − γ(1 + ε) + S1+ε
j S−1−ε

j−1 ] = ∆I(1 + ε)S−1−ε
j−1

(1 + ε)−1εγ1+1/ε − γ + (1 + ε)−1S1+ε
j S−1−ε

j−1 = ∆IS−1−ε
j−1 N

−1

(1 + ε)−1ε

(
1

1 + ∆Y/Y

)1+1/ε

− 1

1 + ∆Y/Y
+ (1 + ε)−1S1+ε

j S−1−ε
j−1 = ∆IS−1

j−1

Y −1

1 + ∆Y/Y

1

1 + ∆Y/Y

(
1 +

∆I/Y

Sj−1

)
− 1

1 + 1ε

(
1

1 + ∆Y/Y

)1+1/ε

− 1

1 + ε
S1+ε
j S−1−ε

j−1 = 0

This equation is exactly the same as equation (5) in Kleven and Waseem (2013a).

A.2 CES Utility with only intercept changes

Much of the literature studying changes in the intercept of the budget constraint, called
notches in public finance, uses the same isoelastic and quasi-linear utility function as Saez

7Note that N j = Dj(1 + ∆Y/Dj)S
−ε
j−1 with Sj−1 not Sj because the marginal agent that bunches at the

notch moves in two steps, the first step from the old price to the new price and in the second step from the
new price interior solution to the notch.
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(2010), for example, Kleven and Waseem (2013a); Best and Kleven (2017). To demonstrate
the generality of our model, in this example, we use a constant elasticity of substitution
(CES) utility, in which ψ is the constant elasticity of substitution between consumption and
labor.

Agents maximize CES utility subject to a budget constraint with one intercept change
such that ∆I1 6= 0 while also facing a linear tax S1 = S0 = (1− t) and earning exogenous
non-labor income, Ri. Formally this is

max
Ci,Li

(
C

ψ−1
ψ

i − (N∗i )
−1
ψ L

ψ−1
ψ

i

) ψ
ψ−1

s.t. Yi = Li (14)

Ci = (1− t)Yi + ∆I11 (Yi > D1) +R.

And optimal reported labor supply and therefore income is again a simple piecewise
function,

Yi =


(1−t)−ψ

N∗i −(1−t)1−ψ ((R + ∆I) N∗i < N1

D1 N∗i ∈
[
N1, N1

]
(1−t)−ψ

N∗i −(1−t)1−ψR N∗i > N1

(15)

When there is a change in intercepts, a notch in the budget constraint, at the discontinuity
Dj the threshold N j is defined by the ability that has an indifference curves that is tangent

to the budget constraint at Dj. The threshold N j is similarly defined by the ability that is
indifferent between reporting Yi = Dj at the discontinuity point and reporting their optimal
location above it, Yi > Dj .

A.2.1 CES Utility with intercept and slope changes

Agents maximize their constant elasticity of substitution utility, where ψ is the constant
elasticity, subject to their budget constraint with exogenous income, R, and for simplicity
one discontinuity, D1,

max
Yi,Ci

u (Yi, Ci;N
∗
i ) =

[
C

ψ−1
ψ

i − (N∗i )−
1
ψY

ψ−1
ψ

i

] ψ
ψ−1

subject to
Ci = S0Yi + (∆I1 + ∆S1(Yj −D1))1(Yi > D1) +Ri.

The Lagrangian and first-order conditions can be written as,

L =

[
C

ψ−1
ψ

i − (N∗i )−
1
ψY

ψ−1
ψ

i

] ψ
ψ−1

+ λ [S0Yi + (∆I1 + ∆S1(Yj −D1))1(Yi > D1) +Ri − Ci]
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∂L
∂Ci

= C
− 1
ψ

i

[
C

ψ−1
ψ

i − (N∗i )−
1
ψY

ψ−1
ψ

i

] 1
ψ−1

− λ = 0

∂L
∂Yi

= −(N∗i )−
1
ψY
− 1
ψ

i

[
C

ψ−1
ψ

i − (N∗i )−
1
ψY

ψ−1
ψ

i

] 1
ψ−1

+ λ [S0 + ∆S11(Yi > D1)] = 0.

Combining the first-order conditions and the budget constraint gives,

(N∗i )−
1
ψY
− 1
ψ

i = C
− 1
ψ

i [S0 + ∆S11(Yi > D1)]

N∗i Yi = (S0Yi + (∆I1 + ∆S1(Yj −D1))1(Yi > D1) +R) [S0 + ∆S11(Yi > D1)]−ψ

Yi =
((∆I1 −∆S1D1)1(Yi > D1) +R) [S0 + ∆S11(Yi > D1)]−ψ

N∗i − (S0 −∆S11(Yi > D1)) [S0 + ∆S11(Yi > D1)]−ψ

The demand, Yi is a piecewise function depending on whether or not Yi > D1, which can
be written in terms of the heterogeneity variable N∗i ,

Yi =


S−ψ1

N∗i −S
ψ−1
1

(Ri + ∆I −∆S1D1) if N∗i > N1

D1 if N∗i ∈ [N1, N1]
S−ψ0

N∗i −S
ψ−1
0

Ri if N∗i < N1.

This demand function encompasses both kinks and notches. The following two
subsections give the simplified demand functions with only a kink or only a notch and
explicitly solves for the thresholds, N i and N i

A.2.2 Kinks

With a concave kink discontinuity, some agents decrease their Yi, such that some mass
bunch at the discontinuity. The agents that bunch at discontinuity Dj are those with
N∗i ∈ [N j, N j]. When the discontinuity is a kink, the thresholds are determined by noting
that the lowest N∗i that bunches, N chooses Yi = Dj, with the slope Sj−1 and the highest
N∗i that bunches, N chooses Yi = Dj, with the slope Sj. These thresholds can be written as,
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D1 =
S−ψ0

N − Sψ−1
0

R

(N − Sψ−1
0 )D1 = S−ψ0 R

ND1 = S−ψ0 R + Sψ−1
0 D1

N =
S−ψ0 R + Sψ−1

0 D1

D1

and

N =
S−ψ1 (R−∆S1D1) + Sψ−1

1 D1

D1

The demand function can then be written as,

Yi =


S−ψ1

N∗i −S
ψ−1
1

(Ri −∆S1D1) if N∗i >
S−ψ1 (R−∆S1D1)+Sψ−1

1 D1

D1

D1 if N∗i ∈ [
S−ψ0 R+Sψ−1

0 D1

D1
,
S−ψ1 (R−∆S1D1)+Sψ−1

1 D1

D1
]

S−ψ0

N∗i −S
ψ−1
0

Ri if N∗i <
S−ψ0 R+Sψ−1

0 D1

D1
.

A.2.3 Notches

The lowest type of agent that bunches at the notch, denoted by N1, chooses to be at the
notch point given the budget constraint to the left of the notch. Said differently, their
indifference curve is tangent to the notch point and can be written as

D1 =
S−ψ0

N − Sψ−1
0

R

(N − Sψ−1
0 )D1 = S−ψ0 R

ND1 = S−ψ0 R + Sψ−1
0 D1

N1 =
S−ψ0 R + Sψ−1

0 D1

D1

.

The highest type of agent that bunches at the notch, denoted by N, receives the same
utility from bunching at the notch or consuming to the right of the notch given the budget
constraint to the right of the notch. This condition can be written as an implicit function
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[
(D(S + (R/D))

ψ−1
ψ −N−

1
ψD

ψ−1
ψ

1

] s
s−1

=

[
C

ψ−1
ψ

i −N−
1
ψ (Yi)

ψ−1
ψ

] ψ
ψ−1

N1 =
D

ψ−1
ψ − Y

ψ−1
ψ

α1D
ψ−1
ψ − α2Y

ψ−1
ψ

where α1 = (S +R/D)
ψ−1
ψ , α2 = (S + R̃/Y )

ψ−1
ψ , and R̃ = R + ∆I. With these thresholds,

the demand can be written as

Yi =


S−ψ

N∗i −Sψ−1 (Ri + ∆I) if N∗i > N1

D1 if N∗i ∈ [N1, N1]
S−ψ

N∗i −Sψ−1Ri if N∗i < N1.
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B Saez (2010)

This section presents the derivations behind key expressions in Saez (2010) using his
notation. We include all details to make the solution abundantly accessible to the reader.

B.1 Utility Maximization in Saez (2010)

We begin with section, ‘‘B. Empirical Estimation of the Elasticity using Bunching’’ from
(Saez, 2010, p. 185). Each agents solves a utility maximization problem of the form

max
c,z

c− n

1 + 1/e

( z
n

)1+1/e

s.t.

c = z (1− t0) 1 (z ≤ z∗) + z (1− t1) 1 (z > z∗) +R

in which c is consumption, z is earnings, R is non-earning resources that can be spent on
consumption, and the compensated elasticity of reported income with respect to (one minus)
the marginal tax rate is e ≥ 0. Without loss of generality, we assume that t0 ≤ t1. This
specification for utility gives that the higher the level of ability n the lower is the disutility
of earning income level z for any e > 0. At e = 0, all agents solve the same problem because
n no longer enters utility. The unobservable ability variable, n, is distributed according to
some PDF f (n) and some CDF F (n). The utility function is decreasing in income because
we implicitly assume that earning income labor supply which reduces utility. We could make
this explicit by replacing z with labor supply l in the utility function then introducing a
second constraint that sets z = l so that nominal wage is one. Notice we need to have
z ∈ (0,∞) and n ∈ (0,∞) as well. The Lagrangian to be maximized is

L = c− n

1 + 1/e

( z
n

)1+1/e

+ λ [z (1− t0) 1 (z ≤ z∗) + z (1− t1) 1 (z > z∗) +R− c]

Differentiate with respect to c to get the first order condition (FOC)

Lc = 1− λ = 0

So that λ = 1 which captures the implicit assumption that the price of consumption, which
is the price of relaxing the budget constraint, is normalized to one. Because we already set
the nominal wage of labor to one, this also implies the real wage is equal to one. In order to
maximize with respect to earned income, we consider three regions, which are z < z∗, z = z∗,
and z > z∗. We can solve for the optimal z within these regions by solving the first order
condition because L is differentiable with respect to z within them. Starting with the z < z∗

region the Lagrangian becomes

L | z < z∗ = c− n

1 + 1/e

( z
n

)1+1/e

+ λ [z (1− t0) +R− c]
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So that the FOC within this region is

Lz | z < z∗ = −n
(

1

n

)1+1/e

z1/e + λ (1− t0) = 0

Solving this FOC for optimal z gives

z = nλe (1− t0)e

We can follow the same steps for the L | z > z∗ to get that

z = nλe (1− t1)e

The solution to the case when z = z∗ is trivial because that’s just it. Combining the solution
in each region with the fact that that λ = 1 provides the case wise optimal solution for all
regions of z

z =


n (1− t0)e z < z∗

z∗ z = z∗

n (1− t1)e z > z∗
(16)

Equation (16) is helpful but is not expressed as the optimal behavior by the agent because
the cases define tautologies instead of decision rules. We can derive a decision rule for the
z < z∗ and z > z∗ regions by substitution

z =


n (1− t0)e n (1− t0)e < z∗

z∗ z = z∗

n (1− t1)e n (1− t1)e > z∗

All that remains in order to characterize the full solution is to replace the tautology when
z = z∗ with a decision rule. In order to do this, we must find the highest ability n that is
indifferent between reporting z = z∗ and facing t0 and reporting z = n (1− t1)e but being
taxed at t0. This means we need to solve the following equality for n

L (z = z∗, n, c) = L (z = n (1− t1)
e
, n, c)

c− n

1 + 1/e

(
z∗

n

)1+1/e

+ λ [z∗ (1− t0) +R− c] = c− n

1 + 1/e

(
n (1− t1)

e

n

)1+1/e

+ λ [n (1− t1)
e

(1− t0) +R− c]

It is obvious that the solution is n = z∗/ (1− t1)e. The steps to solve for n are analogous
and lead to n = z∗/ (1− t0)e. Combining these with equation (16) provides the final decision
rule as a function of the latent and unobserved variable n

z =


n (1− t0)e n < z∗/ (1− t0)e

z∗ n ∈ [z∗/ (1− t0)e , z∗/ (1− t1)e]

n (1− t1)e n > z∗/ (1− t1)e
(17)

While expressed in a less compact way, equation (17) is precisely what is derived on (Saez,
2010, p. 186).
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B.2 Inference in Saez (2010)

After solving the agent’s utility maximization problem (Saez, 2010, equation (3)) defines ∆z∗

by considering the percent difference between the highest and lowest ability agents that
report z∗. Namely, ∆z∗ is defined using

n− n
n

=
z∗/ (1− t1)e

z∗/ (1− t0)e
− 1 =

(
1− t1
1− t0

)e
− 1 =

∆z∗

z∗

which is exactly Saez (2010) equation (3). On that same page he defines the counterfactual
linear tax PDF as

h0 (z) = H ′0 (z)

in which
h0 (z) = f (z/ (1− t0)e) / (1− t0)e

and
H0 (z) = F (z/ (1− t0)e)

Following his notation, to the left hand side of the approximation in equation (4) we have

BSaez =

∫ z∗+∆z∗

z∗
h0 (z) dz

= H0 (z∗ + ∆z∗)−H0 (z∗)

= F ((z∗ + ∆z∗) / (1− t0)e)− F (z∗/ (1− t0)e)

= F

((
z∗ + z∗

(
1− t0
1− t1

)e
− z∗

)
/ (1− t0)e

)
− F (z∗/ (1− t0)e)

= F

(
z∗
(

1− t0
1− t1

)e
/ (1− t0)e

)
− F (z∗/ (1− t0)e)

= F (z∗/ (1− t1)e)− F (z∗/ (1− t0)e)

Hence, the mass at the kink point z∗ in (Saez, 2010, equation (4), p. 186), without
approximating the integral, is identical to BSaez defined in equation (6) of the main text.
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C Proofs

C.1 Proof of Lemma 3.1

Proof. It suffices to show that for every ε > 0, there exists Fn,ε ∈ Fn such that
Fy = T (Fn,ε, ε, d1, p0, p1) for fixed Fy, d1, p0, and p1. To show the existence of such an Fn,ε,
fix arbitrary ε > 0 and then construct Fn,ε as follows:

1. First, define a continuous function φ : [d1 − εp0, d1 − εp1]→ R+ such that:

(a) φ(d1 − εp0) = limu↑d1 fy(u);

(b) φ(d1 − εp1) = limu↓d1 fy(u);

(c)
∫
φ(u) du = Fy(d1)− limu↑d1 Fy(u).

2. Second, compute the CDF Fn,ε as the integral of the following PDF:

fn,ε (v) =


fy (εp0 + v) , v ∈ (−∞, d1 − εp0)

φ (v) , v ∈ [d1 − εp0, d1 − εp1]

fy (εp1 + v) v ∈ (d1 − εp1,+∞)

C.2 Example 1 - Saez Identification Restriction

A simple identification restriction on Fn is to assume that the density fn follows a particular
function on the interval [n1, n1] where this function is known to the researcher. This is the
type of identification restriction implicit in the analysis of Saez (2010).

Saez (2010) relies on the trapezoidal approximation of an integral of the density of Y0,
the income Y in the counter-factual scenario where t1 is equal to t0. More specifically,∫ D′1

D1

fY0(y) dy ≈ (D′1 −D1)(fY0(D
′
1)− fY0(D1))/2

where D′1 = D1((1− t0)/(1− t1))ε.
This approximation holds exactly if the density fY0(y) is a linear function of y for

y ∈ [D1, D
′
1]. Note that fY0 is a simple transformation of the density of N with

fY0(y) = fN (Y/(1− t0)ε) /(1− t0)ε. Therefore, the trapezoidal approximation holds exactly
if fN (n) is a linear function of n for n ∈ [D1/(1− t0)ε, D1/(1− t1)ε]. A linear shape on fN
within [D1/(1− t0)ε, D1/(1− t1)ε] is equivalent to an exponential shape on fn within
[n1, n1]. Under this assumption, the elasticity ε is identified as the solution of Equation (5)
by Saez (2010).

The linear approximation would be good a non-linear density fN if the interval
[D1/(1− t0)ε, D1/(1− t1)ε] is very small. For a fixed value of ε, a observed small change in
tax rates makes this interval small and the linear approximation may be good. The problem
with this argument is that the quality of the approximation deteriorates the bigger the
elasticity is. Therefore, we can never learn if the linear approximation is a good one because
it depends on the unidentified quantity ε.
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C.3 Example 2 - Parametric Restrictions

Other examples of parametric restrictions on Fn include a polynomial functional form on the
PDF fn. A polynomial form for fn translates into a polynomial form for fy. For example,
Chetty et al. (2011) and Kleven and Waseem (2013a) identify the coefficients of a
polynomial on fy and take those coefficients to generate fn. It is important to emphasize
that even if fy is non-parametrically identified, estimating a polynomial form for fy is not a
non-parametric identification strategy even if fy is non-parametrically identified. Unless fn
over [n1, n1] is restricted to be a parametric functional of the distribution of Fy, Lemma 3.1
says it is impossible to identify ε.

The researcher may impose restrictions on fn that allow for more flexible shapes than
linearity and still identify the elasticity. One may assume a parametric class of distributions
such that Fn = {Fn = Fθ , θ ∈ Θ} where Fθ are CDFs indexed by a parameter θ in a
parameter space Θ. Identification consists of solving for the elasticity ε as a function of d1,
s0, and s1 using the following conditions.

Equation (7) is simply Equation (6) restated. Equations (8) and (9) come from the fact
that the continuous part of the distribution of y has a PDF function that equals the PDF of
n shifted. That is, fy(u) = fn(u− εs0) for u < d1, and fy(u) = fn(u− εs1) for u > d1. Aside
from these unknown shifts, the shape of fy is the same of the shape of fn. This is valuable
identifying information because the distribution of y is fully observed.

We demonstrate how to verify these conditions in the parametric Gaussian case. Suppose
the distribution of n follows a normal distribution with unknown mean µ and unknown
variance σ2, such that Fn(n) = Fµ,σ2(n) = Φ

(
n−µ
σ

)
where Φ denotes the standard normal

CDF.
First, Equation (8) plus the normality assumption gives Fy(u) = Φ

(
u−εs0−µ

σ

)
. Inverting

the CDF yields (u− εs0 − µ)/σ = Φ−1(Fy(u)). The function on LHS is linear in u. The
function on the RHS is identified from the data. Two distinct points u′ < u < d1 suffice to
identify the slope 1/σ and intercept −(εs0 + µ)/σ of the LHS function. Hence, σ is
identified, and k0 ≡ εs0 + µ is identified. Similarly, Equation (9) identifies k1 ≡ εs1 + µ.
Combining k0 and k1 identifies the elasticity ε = (k0 − k1)/(s1 − s0).

C.4 Proof of Theorem 3 - Partial Identification

Assume Fn contains all distributions with continuous PDF fn such that the maximum slope
magnitude of fn is M ∈ (0,∞). Then, the elasticity ε ∈ Υ where

Υ =


∅ , if P[y = d1] <

|f(d+1 )−f(d−1 )| [f(d+1 )+f(d−1 )]
2M

[ε, ε] , if
|f(d+1 )−f(d−1 )| [f(d+1 )+f(d−1 )]

2M
≤ P[y = d1] <

f(d+1 )2+f(d−1 )2

2M

[ε,∞) , if
f(d+1 )2+f(d−1 )2

2M
≤ P[y = d1]
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where ∅ is the empty set, and

ε =
2
[
f(d+

1 )2/2 + f(d−1 )2/2 +M P[y = d1]
]1/2 − (f(d+

1 ) + f(d−1 )
)

M(s0 − s1)

ε =
−2
[
f(d+

1 )2/2 + f(d−1 )2/2−M P[y = d1]
]1/2

+
(
f(d+

1 ) + f(d−1 )
)

M(s0 − s1)

First, let’s fix ε > 0. We look at all possible PDFs in Fn and compute the maximum and
minimum integrals over the interval [n0, n1]. The length of this interval is ε(s0 − s1). Thus,
without loss of generality, we restrict our attention to fn over the interval [0, ε(s0 − s1)] such
that:

(i) fn is continuous, and it connects the point (0, fy(d
−
1 )) to (ε(s0 − s1), fy(d

+
1 )) in the

(x,y) plane;
(ii) the absolute value of the slope of fn is bounded by M.

First, start with fn being a line. The magnitude of the slope is
|fy(d+1 )−fy(d−1 )|

ε(s0−s1)
. Suppose

this magnitude is bigger than M . Then, any fn satisfying (i) will have a slope magnitude

higher than M at some point. Therefore, we need to look at ε ≥ ε1 where ε1 =
|fy(d+1 )−fy(d−1 )|

M(s0−s1)
.

For fixed ε ≥ ε1, the slope of the line will be less or equal to M . The maximum possible
area is attained when the function has the shape of hat whose lines attain the maximum
slope. That is, a combination of two line segments. One that starts (0, fy(d

−
1 )) and has slope

+M , and another that ends at (ε(s0 − s1), fy(d
+
1 )) and has slope −M . Call this function fn.

These lines intersect at x∗ where

x∗ =
fy(d

+
1 )− fy(d−1 ) +Mε(s0 − s1)

2M
.

Note that x∗ is always such 0 ≤ x∗ ≤ ε(s0 − s1) because ε ≥ ε1. Note that it is impossible to
find another fn that satisfies (i), it is greater than fn, and that has slope magnitude less or
equal than M . The maximum area is

A(ε) =

∫ ε(s0−s1)

0

fn(v) dv

= (1/4M)
[
M2ε2s2

0 − 2M2ε2s0s1 +M2ε2s2
1 + 2Mεfy(d

−
1 )

s0 − 2Mεfy(d
−
1 )s1 + 2Mεfy(d

+
1 )s0 − 2Mεfy(d

+
1 )s1 − fy(d−1 )2 + 2fy(d

−
1 )fy(d

+
1 )− fy(d+

1 )2)
]

The function A(ε) is strictly increasing with respect to ε over ε ≥ ε1. In fact, the
derivative is ((s0 − s1)(fy(d

−
1 ) + fy(d

+
1 ) +Mε(s0 − s1))/2 which is strictly positive.

The minimum possible area is attained when the function has the shape of an inverted
hat whose lines attain the maximum slope. That is, a combination of two line segments.
One that starts (0, fy(d

−
1 )) and has slope −M , and another that ends at (ε(s0 − s1), fy(d

+
1 ))

and has slope +M . Differently the hat function, the intersection (x∗∗, y∗∗) of this inverted
hat function may or may not happen above the x-axis. That is, y∗∗ may be negative, but fn
is always positive. In that case, we simply set the function to zero in the region where it
would be negative. Call this function f

n
.
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The intersection occurs at

x∗∗ =
fy(d

−
1 )− fy(d+

1 ) +Mε(s0 − s1)

2M
.

Note that x∗∗ is always such x∗∗ ≥ 0 because ε ≥ ε1. The y-value of the intersection is

y∗∗ =
fy(d

−
1 ) + fy(d

+
1 )−Mε(s0 − s1)

2M
.

and this is positive as long as ε ≤ ε2 where ε2 =
|fy(d+1 )+fy(d−1 )|

M(s0−s1)
. Note also that ε1 < ε2.

For ε1 ≤ ε ≤ ε2, the minimum area is

A(ε) =

∫ ε(s0−s1)

0

f
n
(v) dv

= (−1/4M)
[
M2ε2s2

0 − 2M2ε2s0s1 +M2ε2s2
1 − 2Mεfy(d

−
1 )s0

+2Mεfy(d
−
1 )s1 − 2Mεfy(d

+
1 )s0 + 2Mεfy(d

+
1 )s1 − fy(d−1 )2 + 2fy(d

−
1 )fy(d

+
1 )− fy(d+

1 )2
]

The function A(ε) is strictly increasing with respect to ε over ε1 ≤ ε < ε2. In fact, the
derivative is ((s0 − s1) ∗ (fy(d

−
1 ) + fy(d

+
1 )−Mε(s0 − s1)))/2 which is strictly positive once

we take into account ε < ε2. The function A(ε) is constant with respect to ε over ε ≥ ε2.
Therefore, we have characterized the maximum and minimum areas A(ε) and A(ε) for

any given ε. These areas are undefined if ε < ε1, they are equal if ε = ε1, they are strictly
increasing wrt ε and A(ε) ≤ A(ε) for ε ∈ (ε1, ε2). For ε ≥ ε2, A(ε) continues to grow wrt ε
but A(ε) stays constant at A(ε2). The expression for A(ε2) is (fy(d

−
1 )2 + fy(d

+
1 )2)/2M .

Finally, we define the partially identified set. Call the probability of bunching p = P[y = d1].
Case I: If p < A(ε1) = A(ε1), there does not exist any function fn consistent with any

elasticity ε, so the set is empty. The expression for A(ε1) = A(ε1) is
(|fy(d−1 )− fy(d+

1 )|(fy(d−1 ) + fy(d
+
1 )))/(2M).

Case II: Suppose p ≥ A(ε1) and p < A(ε2). There is an interval range for ε such that
for any ε in this interval there exists a function fn whose integral equals p. The minimum
possible elasticity solves A(ε) = p. That gives

ε =
2
[
f(d+

1 )2/2 + f(d−1 )2/2 +M P[y = d1]
]1/2 − (f(d+

1 ) + f(d−1 )
)

M(s0 − s1)
.

The maximum possible elasticity solves A(ε) = p. That gives

ε =
−2
[
f(d+

1 )2/2 + f(d−1 )2/2−M P[y = d1]
]1/2

+
(
f(d+

1 ) + f(d−1 )
)

M(s0 − s1)

Case III: Suppose p ≥ A(ε2). It is still possible to find a minimum elasticity that solves
A(ε) = p. However, for any elasticity ε ≥ ε we have A(ε) ≤ p, so ε is infinity.
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D Multi-step estimation

The model proposed in equation (2) can also be estimated using a multi-step procedure
similar to Heckman (1976). Starting with the value of labor supplied in logs we can write
the general model as

yi =


ε ln (1− t0) + x′iβ + ηi νi < d1 − ε ln (1− t0)− x′iβ − z′iγ
d1 νi = [d1 − ε ln (1− t0)− x′iβ − z′iγ, d1 − ε ln (1− t1)− x′iβ − z′iγ]

ε ln (1− t1) + x′iβ + ηi νi > d1 − ε ln (1− t1)− x′iβ − z′iγ
(18)

We could derive this model from equation (4) by taking two steps. First, we would
assume that the latent variable process which determines log labor supply li is given by

n∗i = x′iβ + z′iγ + νi (19)

Second, we would assume that z′iγ affects the probability of supplying labor at the kink
but does affect the level of earnings. We can motivate this assumption by treating the labor
market in our model as being perfectly competitive so that z′iγ does not affect the worker’s
marginal productivity. Because of this, the workers wage will not include compensation or
penalty for those factors in their wages. As such, the log of earnings can be written as

yi = wi + li

= wi + ε ln (1− t0) + n∗i
= wi + ε ln (1− t0) + x′iβ + z′iγ + νi

= −z′iγ + ζi + ε ln (1− t0) + x′iβ + z′iγ + νi

= ζi + ε ln (1− t0) + x′iβ + νi

= ε ln (1− t0) + x′iβ + νi + ζi

= ε ln (1− t0) + x′iβ + ηi

in which wi = −z′iγ + ζi and ηi ≡ νi + ζi. Next we make the simplifying assumption that[
ηi
νi

]
∼ N

(
0
0
,

1 σνρ
σνρ σν

)
(20)

So that the model is a type 2 Tobit model with middle censoring. Using the properties of
a truncated normal distribution allows us to write the conditional expectations for this
model as

E [yi | yi < d1, x
′
i, z
′
i, t0, t1] = ε ln (1− t0) + x′iβ − ρλi (d1, x

′
i, z
′
i, t0)

E [yi | yi > d1, x
′
i, z
′
i, t0, t1] = ε ln (1− t1) + x′iβ + ρλi (d1, x

′
i, z
′
i, t1)
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in which the inverse mills ratio using the lower marginal rate is

λi (d1, x
′
i, z
′
i, t0) =

φν

(
d1 − ε ln (1− t0)− x′iβ − z′iγ

σν

)
Φν

(
d1 − ε ln (1− t0)− x′iβ − z′iγ

σν

) (21)

and the inverse mills ratio using the upper marginal rate, λi (d1, x
′
i, z
′
i, t0), is

symmetrically defined by repalcing t0 with t1. After deriving these defintions, we can
propose a multi-step estimator. In doing so, it will be useful to partition β′ = (β0, β1)′ in
which β0 is the scalar coefficient on a constant term in x′i and β1 is a K × 1 vector of other
coefficient. Define x′i = (x′i0, x

′
i1) similarly. For simplicity, we also use population formulas

instead of estimates.

• Step 1: Recover a linear combination of the elasticity and the overall constant term:
α0 = ε ln (1− t0) + β0.

– Step 1. a.) Estimate a probit model in which you define an indicator for
observing income below the kink d1

E [1 (yi < d1) | x′i, z′i, t0] = P [yi < d1 | x′i, z′i, t0]

= P [n∗i < n̄i | x′i, z′i, t0]

= P [νi < d1 − ε ln (1− t0)− x′iβ − z′iγ | x′i, z′i, t0]

= Φ

[
d1 − α0 − x′i1β1 − z′iγ

σν

]
By including a constant term in x′i, it will be impossible to recover the elasticity
directly from this regression. We will denote the constant term from this probit
model as α0 = ε ln (1− t0) + β0. With the estimate of these parameters from the
probit, form the inverse mills ratio

λi (d1, x
′
i, z
′
i, α0) =

φν

(
d1 − α0 − x′i1β1 − z′iγ

σν

)
Φν

(
d1 − α0 − x′i1β1 − z′iγ

σν

) (22)

– Step 1. b.) Estimate a linear regression using income levels below the kink d1 and
include the inverse mills ratio from 1. a.) as a covariate

E [yi | yi < d1, x
′
i, z
′
i] = α0 + x′i1β1 + ρλi (d1, x

′
i, z
′
i, α0)

Store the constant term from this regression α0.

• Step 2: Recover a linear combination of the elasticity and the overall constant term:
α1 = ε ln (1− t1) + β0.
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– Step 2. a.) Estimate a probit model in which you define an indicator for
observing income above the kink d1

E [1 (yi > d1) | x′i, z′i] = Φ

[
d1 − α1 − x′i1β1 − z′iγ

σν

]
We will denote the constant term from this probit model as α1 = ε ln (1− t1) + β0.
With the estimate of these parameters in hand, form the inverse mills ratio

λi (d1, x
′
i, z
′
i, α1) =

φν

(
d1 − α1 − x′i1β1 − z′iγ

σν

)
Φν

(
d1 − α1 − x′i1β1 − z′iγ

σν

) (23)

– Step 2. b.) Estimate a linear regression using income levels above the kink d1 and
include the inverse mills ratio from 2. a.) as a covariate

E [yi | yi > d1, x
′
i, z
′
i] = α1 + x′i1β1 + ρλi (d1, x

′
i, z
′
i, α1)

Store the constant term from this regression α1.

• Step 3: Recover the elasticity using the constant terms estimated 1. b.) and 2. b.) as

ε =
α1 − α0

ln (1− t1)− ln (1− t0)

Standard errors for ε can be easily recovered by using the fact that both α1 and α0 are
asymptotically normally distributed.

E EM ordered approach

Why did you finally make progress? It is because you realized that the best way to write the
problem was as treating the latent variable as the two index binary variable for if the ability
is within a specific case. When you define the latent variable that way, you have a discrete
mixture model.

E.1 The statistical model

The selection equation is given by

n∗i = x′iβ + w′iγ + νi (24)

in which n∗i is a latent variable for each of N individuals, xi is a K × 1 vector of
covariates that can affect the unobserved selection variable n∗i and the outcome variable yi
while wi is a L× 1 vector of covariates that are excluded from the outcome equation. The



54 BERTANHA, MCCALLUM, AND SEEGERT: BETTER BUNCHING, NICER NOTCHING

outcome equation takes different values yi based on on the value of the selection variable n∗i
acccording to

yi =


e ln (1− t0) + x′iα + ζi + ξi n∗i < k − e ln (1− t0)

µ+ δk + ξi n∗i ∈ [k − e ln (1− t1) , k − e ln (1− t0)]

e ln (1− t1) + x′iα + ζi + ξi n∗i > k − e ln (1− t1)

(25)

in which ξi is the optimizing friction/classical measurement error. Equations (1) and (2)
define the model. It is straightfoward to see that this model nests Saez (2010), page 186 just
above equation (3), when νi = ζi and α = β = γ = µ = ξi = 0 and δ = 1.

The likelihood for this problem is given by

L (θ | x,w, y) =
N∏
i=1

P [yi | t0, t1, xi, wi, k, θ]

=
N∏
i=1

∫
P [yi, n

∗
i | t0, t1, xi, wi, k, θ]P [n∗i | t0, t1, xi, wi, k, θ] dn∗i

It will be helpful to transform the latent variable into cases as

qij =


1 [n∗i < k − e ln (1− t0)] j = 1

1 [k − e ln (1− t0) ≤ n∗i ≤ k − e ln (1− t1)] j = 2

1 [n∗i > k − e ln (1− t1)] j = 3

(26)

which allows us to write (2) as

yi =


e ln (1− t0) + x′iα + ζi + ξi qi1 = 1

µ+ δk + ξi qi2 = 1

e ln (1− t1) + x′iα + ζi + ξi qi3 = 1

(27)

The likelihood for this problem is given by

L (θ | x,w, y) =
N∏
i=1

∫
P [yi, n

∗
i | t0, t1, xi, wi, k, θ]P [n∗i | t0, t1, xi, wi, k, θ] dn∗i

=
N∏
i=1

J∑
j=1

P [yi | t0, t1, xi, wi, k, qij = 1]P [qij = 1 | t0, t1, xi, wi, k]

Maximizing the product of a sum is very difficult so we will use the EM algorithm.
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E.2 Parametric assumptions

For now assume that the errors are uncorrelated and normally distributued so that
νi ∼ N (0, σ2

ν), ζi ∼ N
(
0, σ2

ζ

)
, and ξi ∼ N

(
0, σ2

ξ

)
. Using this fact we know that

P [yi | t0, t1, xi, wi, k, qi1 = 1] =
(√

σ2
ν + σ2

ζ

)−1

φ

yi − e ln (1− t0)− x′iα√
σ2
ν + σ2

ζ



P [yi | t0, t1, xi, wi, k, qi2 = 1] = σ−1
ξ φ

(
yi − µ− δk

σξ

)

P [yi | t0, t1, xi, wi, k, qi3 = 1] =
(√

σ2
ν + σ2

ζ

)−1

φ

yi − e ln (1− t1)− x′iα√
σ2
ν + σ2

ζ


Using the normality assumption and latent variables we defined above, we know that

P [qi1 = 1 | t0, t1, xi, wi, k] = P [n∗i < k − e ln (1− t0) | t0, t1, xi, wi, k]

= Φ

(
e ln (1− t0)− x′iβ − w′iγ

σν

)

P [qi2 = 1 | t0, t1, xi, wi, k] = P [k − e ln (1− t0) ≤ n∗i ≤ k − e ln (1− t1) | t0, t1, xi, wi, k]

= Φ

(
e ln (1− t1)− x′iβ − w′iγ

σν

)
− Φ

(
e ln (1− t0)− x′iβ − w′iγ

σν

)

P [qi3 = 1 | t0, t1, xi, wi, k] = P [n∗i > k − e ln (1− t1) | t0, t1, xi, wi, k]

= 1− Φ

(
e ln (1− t1)− x′iβ − w′iγ

σν

)
These assumptions are not so bad that we couldn’t maximize the likelihood directly but

it will be much easier using the EM algoritm.
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E.3 EM approach

Define a latent variable unobserved N × J matrix p

p∗ =


p∗11 p∗12 . . . p∗1J
p∗21 p∗22 . . .
... . . .

. . .
...

p∗N1 p∗N2 . . . p∗NJ


in which

p∗ij =

{
1, yi from P [yi | t0, t1, xi, wi, k, qij = 1]P [qij = 1 | t0, t1, xi, wi, k]

0, otherwise

Then the likelihood becomes

L (θ | x,w, y) =
N∏
i=1

K∑
k=1

P [yi | t0, t1, xi, wi, k, qij = 1]P [qij = 1 | t0, t1, xi, wi, k]

=
N∏
i=1

J∏
j=1

(P [yi | t0, t1, xi, wi, k, qij = 1]P [qij = 1 | t0, t1, xi, wi, k])p
∗
ij

=
N∑
i=1

J∑
j=1

p∗ij ln (P [yi | t0, t1, xi, wi, k, qij = 1]P [qij = 1 | t0, t1, xi, wi, k])

which

l (θ | x,w, y) =
N∑
i=1

J∑
j=1

p∗ij ln (P [yi | t0, t1, xi, wi, k, qij = 1]P [qij = 1 | t0, t1, xi, wi, k])

=
N∑
i=1

J∑
j=1

p∗ij ln (P [yi | t0, t1, xi, wi, k, qij = 1])

+
N∑
i=1

J∑
j=1

p∗ij ln (P [qij = 1 | t0, t1, xi, wi, k])
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E.4 Writing out the terms explicitly

N∑
i=1

J∑
j=1

p∗ij ln (P [yi | t0, t1, xi, wi, k, qij = 1]) =
N∑
i=1

p∗i1 ln

(√σ2
ξ + σ2

ζ

)−1

φ

yi − e ln (1− t0)− x′iα√
σ2
ξ + σ2

ζ


+

N∑
i=1

p∗i2 ln

[
σ−1
ξ φ

(
yi − µ− δk

σξ

)]

+
N∑
i=1

p∗i3 ln

(√σ2
ξ + σ2

ζ

)−1

φ

yi − e ln (1− t1)− x′iα√
σ2
ξ + σ2

ζ


N∑
i=1

J∑
j=1

p∗ij ln (P [qij = 1 | t0, t1, xi, wi, k]) =
N∑
i=1

p∗i1 ln

[
Φ

(
e ln (1− t0)− x′iβ − w′iγ

σν

)]

+
N∑
i=1

p∗i2 ln

[
Φ

(
e ln (1− t1)− x′iβ − w′iγ

σν

)
− Φ

(
e ln (1− t0)− x′iβ − w′iγ

σν

)]

+
N∑
i=1

p∗i3 ln

[
Φ

(
e ln (1− t1)− x′iβ − w′iγ

σν

)]
I guess you don’t know for sure if this is the correct E step but I think going with it is

fine for now.

E
[
p
∗(m)
ij | ·

]
=

P
[
yi | t0, t1, xi, wi, k, qij = 1, θ(m)

]
P
[
qij = 1 | t0, t1, xi, wi, k, θ(m)

]∑J
j=1 P [yi | t0, t1, xi, wi, k, qij = 1, θ(m)]P [qij = 1 | t0, t1, xi, wi, k, θ(m)]

F Alternative Methods

General steps (which I will then elaborate on).
PDF and CDF

Everything in this section will be discretized into bins. Therefore a PDF (e.g., g(x)) is
just the number of observations (e.g., people or corporations) at x (e.g., income) which is in
bin i = x/w. A CDF is the integral (in discrete talk the sum) of people over some range.

To find the difference in CDFs between two points (e.g., G(z∗ + ∆)−G(z∗)) it is
common for some of these alternative methods to take the average value of the PDF in the
range (e.g., ¯g(x) = (1/((z∗ + ∆)− z∗))

∑(z∗+∆)
z∗ g(x)) and multiply it by the range (e.g.,

(z∗ + ∆)− z∗ ). Geometrically, this is calculating the difference in the CDFs as the area of
the rectangle with base equal to the range (z∗ + ∆)− z∗ and the height equal to the average
PDF level ¯g(x). Together this looks like G(z∗ + ∆)−G(z∗) = ḡ(δ)∆z
DEFINITIONS
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1) w is the size of each bin (for example $50).
2) Mi : Number of observations in bin i

Mi =
i+w∑
j=i

1((i− 1)w ≤ zi < wi) (28)

3) Define the ‘‘number’’ of people in the bunching region (z∗ − δ, z∗ + δ), noting, I am not
scaling here.

h(δ) =

(z∗+δ)/w∑
i=(z∗−δ)/w

1(z∗ − δ ≤ zi < z∗ + δ) (29)

F.1 Chetty et al. (2011)

This section presents the model and estimation method of Chetty et al. (2011).
1) Estimate the counterfactual distribution

The counterfactual distribution (this is important to find B, and ∆z). The key difference
between methods is how the counterfactual distribution is estimated.

i) Estimate the distribution from the left and to the right of the bunching region,
using T which is a matrix with columns (1, t, t2, t3, t4, t5, t6, t7), where t is income (or any
running variable). The following regression regresses the number of observations in bin i,
defined as Mi, with income between (i− 1)w and iw, on a polynomial (order 7 typically and
in this example) of income levels.

Mi = TβL + ε if i < (z∗ − δ)/w (30)

Mi = TβR + ε if i > (z∗ + δ)/w (31)

ii) Use the estimates β̂L and β̂R to ‘‘estimate’’ the counterfactual distribution in the
bunching region (z∗ − δ, z∗ + δ),

g(δ) = (T |(z∗−δ)/w≤i<z∗/wβ̂L + T |z∗/w≤i<(z∗+δ)/wβ̂R)/(2δ) (32)

g(δ) is a number (e.g., 10 observations). This estimation adds the expected value of the
distribution from the left and the right from the regressions above and takes the average. So,
this is just a number, which is the average predicted value from the out-of-sample prediction.
This is particularly problematic because the regression in equation (31) is based on an
observed distribution that is affected by the kink (which is being used to estimate the
counterfactual distribution in the absence of the kink).

iii) Typically, the distribution to the right of the kink is assumed to be the same as
under the bunching region.

g(Mi)|z>z∗+δ = g(δ) (33)

This is of course a bad assumption. The issue is it is hard to estimate this distribution
because the observed distribution to the right of the kink is not the distribution in the
absence of the kink. Basically this just says we expect the number of people in each bin to
the right of the kink to be g(δ). Maybe a better notation would be M̂.
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2) Find B
Take the difference between the ‘‘number’’ of people in the bunching region and the

counterfactual number of people in the bunching region.

B = h(δ)− g(δ)2δ (34)

3) Find ∆Z ∫ z∗+∆Z

z∗
g(z)dz = B (35)

which can be rewritten as
G(z∗ + ∆Z)−G(z∗) = B (36)

With the assumption that the distribution to the right of the kink is just g(δ), this can be
rewritten as, (for a longer discussion please see above under the section PDF and CDF),

g(δ)∆Z = B (37)

which gives,
∆Z = B/g(δ) (38)

4) Now calculate elasticity of income with respect to the net of tax rate θ = 1− t,

εZ,θ =
log(∆z/z∗ + 1)

log(1−t0
1−t1 )

=
∆z/z∗

log(1−t0
1−t1 )

=
B/g(δ)

z∗log(1−t0
1−t1 )

(39)

This last equation is exactly the equation in Chetty et al. (2011), Weber (2012), and
Devereux et al. (2014).

F.2 Patel et al. (2016)

Here, the method from Patel et al. (2016) has the same basic steps with one crucial
difference, the counterfactual distribution is estimated from a control group. Here we assume
the distribution of the latent potential income, n, is the same for all ‘‘people,’’ but because
different groups face different kink points, their observed distribution of income is different.

For simplicity, assume two groups k = t, c where z∗t (1− t1)−e < z∗c (1− t0)−e, which
ensures that individuals it latent potential income n ∈ [z∗t /(1− t0)e, z∗t /(1− t1)e] bunch if
they are in the treatment group and do not bunch if they are in the control group.

z =


n(1− t0)e, n < z∗k/(1− t0)e

z∗k, n ∈ [z∗k/(1− t0)e, z∗k/(1− t1)e]

n(1− t0)e, n > z∗k/(1− t1)e

1) Estimate the counterfactual distribution.
i) Here we estimate the distribution, using a polynomial captured by T which is a

matrix with columns (1, t, t2, t3, t4, t5, t6, t7), using only the control group’s observations
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Mi = Tβ + ε if k = c andi < (z∗c − δ)/w (40)

ii) Use the estimate of β to calculate the counterfactual distribution,

g(Mi) = T β̂. (41)

g(δ) =

(z∗t+δ)/w∑
i=(z∗t−δ)/w

g(Mi) (42)

This estiamted counterfactual distribution is used to calculate bunching, B, and ∆z.
2) Find B

Take the difference between the ‘‘number’’ of people in the bunching region and the
counterfactual number of people in the bunching region.

B = h(δ)− g(δ) (43)

3) Find ∆Z ∫ z∗+∆Z

z∗
g(z)dz = B (44)

which can be rewritten as
G(z∗ + ∆Z)−G(z∗) = B (45)

This is slightly more complicated in the PSS method because we use the estimated
distribution to the right of the kink (not just a number).

min∆z

(z∗t+∆z)/w∑
i=z∗t /w

g(Mi)−B

2

s.t.

(z∗t+∆z)/w∑
i=z∗t /w

g(Mi)−B > 0 (46)

4) Now calculate elasticity of income with respect to the net of tax rate θ = 1− t,

εz,θ =
log(∆z/z∗ + 1)

log(1−t0
1−t1 )

=
∆z/z∗

log(1−t0
1−t1 )

(47)
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F.3 Andrew math

F.4 Identification in the notching case

F.4.1 Relating to change in income in Saez

The first thing to do is to relate the change in the highest and lowest latent variables to the
elasticity. The log percent difference in this model is

n− n = d1 − εs1 − (d1 − εs0)

= d1 − εs1 − d1 + εs0

= ε (s0 − s1)

= ε (ln (1− t0)− ln (1− t1))

The percent difference in this model is

N −N
N

=
D1/S

ε
1 −D1/S

ε
0

D1/Sε0

=
D1/S

ε
1

D1/Sε0
− 1

=
Sε0
Sε1
− 1

=

(
1− t0
1− t1

)ε
− 1

In the Saez model the definition of ∆D1 relies on using the upper and lower latent
variables that give the same reported income. This means that we use D−1 = NSε0 so that
D−1 /S

ε
0 = N and similarly D+

1 = NSε1 so that D+
1 /S

ε
1 = N . The definition of

∆D1 = D+
1 −D−1 = NSε1 −NSε0 and

∆D1

D−1
=

D+
1 −D−1
D−1

=
NSε1 −NSε0

NSε0

=
NSε1 −NSε0

NSε0
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Y − Y
D1

=
NSε1 −NSε0

D1

=
D1/S

ε
1 −D1/S

ε
0

D1/Sε0

=
D1/S

ε
1

D1/Sε0

=
Sε0
Sε1

=
(1− t0)ε

(1− t1)ε

=

(
1− t0
1− t1

)ε
The claim is that we can identify the elasticity in the notching case directly from the

data by looking at Dj + ∆Dj.

F.5 Bunching delta

We want to define a term similar to ∆z∗ in Saez. This is done by considering the highest
ability person that reports D1 in our model. That person has ability N̄ = D1/ (1− t1)ε.
Remember that utility maximization with his utility function under a linear tax implied the
person reports Ȳ = N̄ (1− t)ε. Hence, we can construct a counterfactual reported income
that would obtain if the tax rate, t0, below the kink extended past the discrete income level
D1

Ȳ = N̄ (1− t0)ε

Ȳ = D1

(
1− t0
1− t1

)ε
Similarly, the lowest ability person that reports z = z∗ has ability N = D1/ (1− t0)ε. If

they had faced the linear tax of t0, they would report

Y = N (1− t0)ε

Y =
D1 (1− t0)ε

(1− t0)ε

= D1

Combining these two expression defines

∆D1 ≡ Ȳ − Y

= D1

(
1− t0
1− t1

)ε
−D1

Notice that both Ȳ and Y are counterfactual levels of reported income that will never be
observed even if all the assumptions of the model are correct. Saez writes counterfactual
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∆D1 as equation (3)
∆D1

D1

=

(
1− t0
1− t1

)ε
− 1

which we can show is equivalent to

∆D1

D1

=

(
1− t0
1− t1

)ε
− 1 =

N̄

N
− 1

F.6 Notching delta

We want to define a term similar to ∆z∗ in Saez but for the notching case. This is done by
considering the highest ability person that reports D1 in the notching case. For simplicity
use the model presented in equation (5). XXXX it must be the case that ∆I1 < 0 , right? If
R = 0 this means the person supplies negative labor when t = 0? Something is wrong.

That person has ability N̄ = f (D1, ε, t). Remember that utility maximization with his

utility function without a notch the person would report Ȳ =
1

N̄
(R + ∆I1) with t = 0. Why

do higher ability people report lower income?

F.7 Andrew’s math

Introducing a kink in the tax rate changes the problem into

max
c,z

c− n

1 + 1/e

( z
n

)1+1/e

s.t.

c = z (1− t0) 1 (z ≤ z∗) + z (1− t1) 1 (z > z∗) +R

in which c is consumption, z is earnings, and R is non-earning resources that can be
spent on consumption. An unobservable ability variable, n, is distributed according to some
PDF f (n) and some CDF F (n) and affects the level of optimal consumption for each
consumer. Notice we need to have z ∈ (0,∞) and n ∈ (0,∞). The Lagrangian is

L = c− n

1 + 1/e

( z
n

)1+1/e

+ λ [z (1− t0) 1 (z ≤ z∗) + z (1− t1) 1 (z > z∗) +R− c]

= c− n

1 + 1/e

(
1

n

)1+1/e

z1+1/e + λ [z (1− t0) 1 (z ≤ z∗) + z (1− t1) 1 (z > z∗) +R− c]

We want to maximize this lagrangian we can differentiate with respect to c easily to get
started

Lc = 1− λ = 0

1 = λ

We have three regions, they are z < z∗ z = z∗ and z > z∗. We can differentiate with
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respect to z as long we as are in regions in which the Lagrangian is not discontinuous. These
are the z < z∗ and z > z∗ regions. We can solve it by considering, cases, however. Start
with the z < z∗ region then the L becomes

L | z < z∗ = c− n

1 + 1/e

( z
n

)1+1/e

+ λ [z (1− t0) +R− c]

Lz | z < z∗ = −n
(

1

n

)1+1/e

z1/e + λ (1− t0) = 0

n (n)−1−1/e z1/e = λ (1− t0)

n−1/ez1/e = λ (1− t0)( z
n

)1/e

= λ (1− t0)

z

n
= λe (1− t0)e

z = nλe (1− t0)e

Since we know that λ = 1 the optimal value when z < z∗ is

z = n (1− t0)e

We can follow the same steps for the L | z > z∗ to get that

z = n (1− t1)e

The solution to the case when z = z∗ is trivial because that’s just it. This implies that
the casewise optimal solution is therefore

z =


n (1− t0)e z < z∗

z∗ z = z∗

n (1− t1)e z > z∗
(48)

By substitution, we can derive

z =


n (1− t0)e n (1− t0)e < z∗

z∗ z = z∗

n (1− t1)e n (1− t1)e > z∗
(49)

Our goal is to find the person with highest ability n̄ that optimizes constrained utility by
reporting z = z∗. Because the agent reports z = z∗, we can be sure that constrained utility is
maximized at that point. If the agent is indifferent between reporting z = z∗ and facing t1 or
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reporting z = n̄ (1− t1)e and facing that same tax rate t1, given that they are optimizing at
z∗, that means we only need to compare the alternate budget constraints which must
provide the same resources in each case. The general budget constraint is

c = z (1− t0) 1 (z ≤ z∗) + z (1− t1) 1 (z > z∗) +R

The agent must have the same resources from reporting either case so this means we
compare

c (z = z∗, n̄ | t1) = c (z = n̄ (1− t1)e , n̄ | t1)

z∗ (1− t1) +R = n̄ (1− t1)e (1− t1) +R

z∗ (1− t1) = n̄ (1− t1)e (1− t1)

z∗ (1− t1) = n̄ (1− t1)1+e

z∗ = n̄ (1− t1)e

This might be easier to see by consider the full Lagrangian when we use the FOC w.r.t. c
to get that λ = 1

L (z∗ = z, n̄, c) = L (z∗ = n̄ (1− t1)e , n̄, c)

− n̄

1 + 1/e

(
z∗

n̄

)1+1/e

+ z∗ (1− t1) +R = − n̄

1 + 1/e

(
z∗

n̄

)1+1/e

+ n̄ (1− t1)1+e +R

z∗ (1− t1) = n̄ (1− t1)1+e

z∗ = n̄ (1− t1)e

we take similar steps to get the lower cutoff. This leads to the final decision rule as a
function of the ability variable n.

z =


n (1− t0)e n < z∗/ (1− t0)e

z∗ n = [z∗/ (1− t0)e , z∗/ (1− t1)e]

n (1− t1)e n > z∗/ (1− t1)e
(50)

F.8 With a Notch

Introducing a notch in the tax rate changes the problem into

max
c,z

c− n

1 + 1/e

( z
n

)1+1/e

s.t. (51)

c = z (1− t) + ∆T1 (z > z∗) +R

in which c is consumption, z is earnings, and R is non-earning resources that can be
spent on consumption. An unobservable ability variable, n, is distributed according to some
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PDF f (n) and some CDF F (n) and affects the level of optimal consumption for each
consumer. Notice we need to have z ∈ (0,∞) and n ∈ (0,∞). The Lagrangian is

L = c− n

1 + 1/e

( z
n

)1+1/e

+ λ [z (1− t) + ∆T1 (z > z∗) +R− c]

= c− n

1 + 1/e

(
1

n

)1+1/e

z1+1/e + λ [z (1− t) + ∆T1 (z > z∗) +R− c]

We want to maximize this lagrangian we can differentiate with respect to c easily to get
started

Lc = 1− λ = 0

1 = λ

We have three regions, they are z < z∗ z = z∗ and z > z∗. We can differentiate with
respect to z as long we as are in regions in which the Lagrangian is not discontinuous. These
are the z < z∗ and z > z∗ regions. We can solve it by considering, cases, however. Start
with the z < z∗ region then the L becomes

L | z < z∗ = c− n

1 + 1/e

( z
n

)1+1/e

+ λ [z (1− t) +R− c]

Lz | z < z∗ = −n
(

1

n

)1+1/e

z1/e + λ (1− t) = 0

n (n)−1−1/e z1/e = λ (1− t)
n−1/ez1/e = λ (1− t)( z

n

)1/e

= λ (1− t)
z

n
= λe (1− t)e

z = nλe (1− t)e

Since we know that λ = 1 the optimal value when z < z∗ is

z = n (1− t)e

We can follow the same steps for the L | z > z∗ and will do so carefully because this can
get confusing

L | z > z∗ = c− n

1 + 1/e

( z
n

)1+1/e

+ λ [z (1− t) + ∆T +R− c]
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Lz | z > z∗ = −n
(

1

n

)1+1/e

z1/e + λ (1− t) = 0

n (n)−1−1/e z1/e = λ (1− t)
n−1/ez1/e = λ (1− t)( z

n

)1/e

= λ (1− t)
z

n
= λe (1− t)e

z = nλe (1− t)e

z = n (1− t)e

The solution to the case when z = z∗ is trivial because that’s just it. This implies that
the casewise optimal solution is therefore

z =


n (1− t)e z < z∗

z∗ z = z∗

n (1− t)e z > z∗
(52)

Our goal is to find the person with highest ability n̄ that optimizes constrained utility by
reporting z = z∗. Because the agent reports z = z∗, we can be sure that constrained utility is
maximized at that point. If the agent is indifferent between reporting z = z∗ and facing t
plus ∆T or reporting z = n̄ (1− t)e and facing that same tax rate t plus ∆T , given that they
are optimizing at z∗, that means we only need to compare the alternate budget constraints
which must provide the same resources in each case. The general budget constraint is

c = z (1− t) + ∆T1 (z > z∗) +R

The agent must have the same resources from reporting either case so this means we
compare

c (z = z∗, n̄ | t,∆T ) = c (z = n̄ (1− t)e , n̄ | t,∆T )

z∗ (1− t) + ∆T +R = n̄ (1− t)e (1− t) + ∆T +R

z∗ (1− t1) = n̄ (1− t1)e (1− t1)

z∗ (1− t1) = n̄ (1− t1)1+e

z∗ = n̄ (1− t1)e

This might be easier to see by consider the full Lagrangian when we use the FOC w.r.t. c
to get that λ = 1
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L (z∗ = z, n̄, c) = L (z∗ = n̄ (1− t1)e , n̄, c)

− n̄

1 + 1/e

(
z∗

n̄

)1+1/e

+ z∗ (1− t1) +R = − n̄

1 + 1/e

(
z∗

n̄

)1+1/e

+ n̄ (1− t1)1+e +R

z∗ (1− t1) = n̄ (1− t1)1+e

z∗ = n̄ (1− t1)e

Our goal is to find the person with highest ability n̄ that is indifferent between reporting
z = z∗ or reporting z = n (1− t)e and facing the tax notch ∆T . z > z∗. We know that
reporting z = z∗ is optimal so we know the Lagrangian is

L (z∗ = z, n̄, c) = c− n̄

1 + 1/e

(
z∗

n̄

)1+1/e

+ λ [z∗ (1− t) +R− c]

= − n̄

1 + 1/e

(
z∗

n̄

)1+1/e

+ z∗ (1− t) +R

In which the last step comes from the fact that the FOC w.r.t. c ensures λ = 1. This
person should get the same utility from reporting z = n (1− t)e

L (z∗ = n̄ (1− t)e , n̄, c) = c− n̄

1 + 1/e

(
n̄ (1− t)e

n̄

)1+1/e

+ λ [n̄ (1− t)e (1− t) + ∆T +R− c]

= c− n̄

1 + 1/e
((1− t)e)1+1/e

+ λ
[
n̄ (1− t)1+e + ∆T +R− c

]
= c− n̄

1 + 1/e
(1− t)1+e + λ

[
n̄ (1− t)1+e + ∆T +R− c

]
= − n̄

1 + 1/e
(1− t)1+e + n̄ (1− t)1+e + ∆T +R
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Setting these equal and solving for n̄

L (z∗ = z, n̄, c) = L (z∗ = n̄ (1− t)e , n̄, c)

− n̄

1 + 1/e

(
z∗

n̄

)1+1/e

+ z∗ (1− t) +R = − n̄

1 + 1/e
(1− t)1+e + n̄ (1− t)1+e + ∆T +R

− n̄

1 + 1/e

(
z∗

n̄

)1+1/e

+ z∗ (1− t) = − n̄

1 + 1/e
(1− t)1+e + n̄ (1− t)1+e + ∆T

− n̄

1 + 1/e
(z∗)1+1/e n̄−1−1/e + z∗ (1− t) = − n̄

1 + 1/e
(1− t)1+e + n̄ (1− t)1+e + ∆T

−(z∗)1+1/e

1 + 1/e
n̄−1/e + z∗ (1− t) = −n̄

(
1

1 + 1/e
(1− t)1+e + (1− t)1+e

)
+ ∆T

−(z∗)1+1/e

1 + 1/e
n̄−1/e + z∗ (1− t) = −n̄

(
1

1 + 1/e
(1− t)1+e + (1− t)1+e

)
+ ∆T

We also know from the FOC w.r.t. c that λ = 1 so this simplfies to

We also know from the FOC w.r.t. c that λ = 1 so this simplfies to

L (n̄, c) = c− n̄

1 + 1/e

(
z∗

n̄

)1+1/e

+ z∗ (1− t) +R− c

= − n̄

1 + 1/e

(
z∗

n̄

)1+1/e

+ z∗ (1− t) +R

We also know that the lower bound person also reports the same

L (ñ) = c− ñ

1 + 1/e

(
z∗

ñ

)1+1/e

+ λ [z∗ (1− t) +R− c]

L (n̄) = c− n̄

1 + 1/e

(
z∗

n̄

)1+1/e

+ λ [z∗ (1− t) +R− c]

Postulate that the region is this

n = [z∗/ (1− t)e + ∆T, z∗/ (1− t)e]

Nate said that the budget constraint alone is not the right thing to look at and I believe
that is a correct statement.
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The steps one would take in the kinked case are simply

L (z∗ = z, n̄, c | t0) = L (z∗ = n̄ (1− t1)e , n̄, c | t0)

− n̄

1 + 1/e

(
z∗

n̄

)1+1/e

+ z∗ (1− t0) +R = − n̄

1 + 1/e

(
n̄ (1− t1)e

n̄

)1+1/e

+ n̄ (1− t1)e (1− t0) +R

− n̄

1 + 1/e

(
z∗

n̄

)1+1/e

+ z∗ (1− t0) = − n̄

1 + 1/e

(
n̄ (1− t1)e

n̄

)1+1/e

+ n̄ (1− t1)e (1− t0)

So clearly the answer is z∗ = n̄ (1− t1)e. Do the same for the lower kink.
So then in the notches case

L (z∗ = z, n̄, c | t,∆T = 0) = L (z∗ = n̄ (1− t1)e , n̄, c | t,∆T 6= 0)

− n̄

1 + 1/e

(
z∗

n̄

)1+1/e

+ z∗ (1− t) +R = − n̄

1 + 1/e

(
n̄ (1− t)e

n̄

)1+1/e

+ n̄ (1− t)e (1− t) + ∆T +R

− n̄

1 + 1/e

(
z∗

n̄

)1+1/e

+ z∗ (1− t) = − n̄

1 + 1/e

(
n̄ (1− t)e

n̄

)1+1/e

+ n̄ (1− t)e+1 + ∆T

− n̄

1 + 1/e

(
z∗

n̄

)1+1/e

+ z∗ (1− t) = n̄(1− t)1+e

(
1 + 1/e

1 + 1/e
− 1

1 + 1/e

)
+ ∆T

− n̄

1 + 1/e

(
z∗

n̄

)1+1/e

+ z∗ (1− t) = n̄(1− t)1+e 1

1 + e
+ ∆T

So the goal is to try to write this expression as a simple closed form algebraic expression.
Find n such that these two equations are equal

L (z∗ = z, n, c | t,∆T = 0) = L (z = n (1− t)e , n, c | t,∆T = 0)

− n

1 + 1/e

(
z∗

n

)1+1/e

+ z∗ (1− t) +R = − n

1 + 1/e

(
n (1− t)e

n

)1+1/e

+ n (1− t)e (1− t) +R

− n

1 + 1/e

(
z∗

n

)1+1/e

+ z∗ (1− t) = − n

1 + 1/e

(
n (1− t)e

n

)1+1/e

+ n (1− t)e (1− t)

so the lower bound n has to be z∗ = n (1− t)e.
Next, Saez defines ∆z∗. This is done by considering the highest ability person that

reports z = z∗. That person has ability n+ = z∗/ (1− t1)e. Remember that utility
maximization with his utility function under a linear tax implied they would report
z = n (1− t)e. Hence, if this person had faced a linear tax of t0, they would report

z+ = n+ (1− t0)e

z+ = z∗
(

1− t0
1− t1

)e
Similarly, the lowest ability person that reports z = z∗ has ability n− = z∗/ (1− t0)e. If



71 BERTANHA, MCCALLUM, AND SEEGERT: BETTER BUNCHING, NICER NOTCHING

they had faced the linear tax of t0, they would report

z− = n− (1− t0)e

z− = z∗

Combining these two expression defines

∆z∗ ≡ z+ − z−

= z∗
(

1− t0
1− t1

)e
− z∗

Notice that both z+ and z− are counterfactual levels of reported income that will
NEVER be observed even if all the assumptions of the model are correct. Saez writes
counterfactual ∆z∗ as equation (3)

∆z∗

z∗
=

(
1− t0
1− t1

)e
− 1

This can be rewritten as

e =

ln

(
1 +

∆z∗

z∗

)
ln

(
1− t0
1− t1

)
Now, we let

∆z∗ = B/f−() =
F ()− F ()

f−()
≡ b

Which allows us to write with the approximation that log(1 + x) = x,

e =
b

Kln

(
1− t0
1− t1

)
which is exactly the equation (6) in Chetty et al. (2011).

Remember that he defines the counterfactual linear tax PDF as

h0 (z) = H ′0 (z)

where
h0 (z) = f (z/ (1− t0)e) / (1− t0)e

and

H0 (z) = F (z/ (1− t0)e)
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Following his notation, to the left hand side of the approximation in equation (4) we have

BSaez =

∫ z∗+∆z∗

z∗
h0 (z) dz

= H0 (z∗ + ∆z∗)−H0 (z∗)

= F ((z∗ + ∆z∗) / (1− t0)e)− F (z∗/ (1− t0)e)

= F

((
z∗ + z∗

(
1− t0
1− t1

)e
− z∗

)
/ (1− t0)e

)
− F (z∗/ (1− t0)e)

= F

(
z∗
(

1− t0
1− t1

)e
/ (1− t0)e

)
− F (z∗/ (1− t0)e)

= F (z∗/ (1− t1)e)− F (z∗/ (1− t0)e)

which you can see is the exact expression for B given in equation (2) above and our
model exactly recovers the same theoretical mass at the kink as long as β = 0.

My next move would be to apply a change of variables to get this expression in logs so
that I can worry about z∗ − e ln (1− t1) we hope that will give us

BSaez = F (z∗ − e ln (1− t1))− F (z∗ − e ln (1− t0))

Just to make the point easy assume the log linear ability distribution has a mean µ and
standard deviation σ that doesn’t depend on the tax rate then the standardized distribution
would be

BSaez = F

(
z∗ − e ln (1− t1)− µ

σ

)
− F

(
z∗ − e ln (1− t0)− µ

σ

)

∂BSaez

∂µ
=

∂

∂µ
F

(
z∗ − e ln (1− t1)− µ

σ

)
− ∂

µ
F

(
z∗ − e ln (1− t0)− µ

σ

)
=

∂

∂x1

F (x1)
∂x1

∂µ
− ∂

∂x0

F (x0)
∂x0

∂µ

= f (x1)
(
−µ
σ

)
− f (x0)

(
−µ
σ

)
=

µ

σ
(f (x0)− f (x1))

which may have any sign but is certainly non-zero as long as µ = 0.
My next move would be to apply a change of variables to get this expression in logs so

that I can worry about z∗ − e ln (1− t1) we hope that will give us

BSaez = F (z∗ − e ln (1− t1))− F (z∗ − e ln (1− t0))

Just to make the point easy assume the log linear ability distribution has a mean µ and
standard deviation σ that doesn’t depend on the tax rate then the standardized distribution
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would be

BSaez = F

(
z∗ − e ln (1− t1)− µ

σ

)
− F

(
z∗ − e ln (1− t0)− µ

σ

)

∂BSaez

∂µ
=

∂

∂µ
F

(
z∗ − e ln (1− t1)− µ

σ

)
− ∂

µ
F

(
z∗ − e ln (1− t0)− µ

σ

)
=

∂

∂x1

F (x1)
∂x1

∂µ
− ∂

∂x0

F (x0)
∂x0

∂µ

= f (x1)
(
−µ
σ

)
− f (x0)

(
−µ
σ

)
=

µ

σ
(f (x0)− f (x1))

which may have any sign but is certainly non-zero as long as µ = 0.

F.8.1 Utility maximization with notches

Introducing a notch in the tax rate changes the problem into

max
c,z

c− n

1 + 1/e

( z
n

)1+1/e

s.t. (53)

c = z (1− t) + ∆T1 (z > z∗) +R

in which c is consumption, z is earnings, and R is non-earning resources that can be
spent on consumption. An unobservable ability variable, n, is distributed according to some
PDF f (n) and some CDF F (n) and affects the level of optimal consumption for each
consumer. Notice we need to have z ∈ (0,∞) and n ∈ (0,∞). The Lagrangian is

L = c− n

1 + 1/e

( z
n

)1+1/e

+ λ [z (1− t) + ∆T1 (z > z∗) +R− c]

= c− n

1 + 1/e

(
1

n

)1+1/e

z1+1/e + λ [z (1− t) + ∆T1 (z > z∗) +R− c]

We want to maximize this lagrangian we can differentiate with respect to c easily to get
started

Lc = 1− λ = 0

1 = λ

We have three regions, they are z < z∗ z = z∗ and z > z∗. We can differentiate with
respect to z as long we as are in regions in which the Lagrangian is not discontinuous. These
are the z < z∗ and z > z∗ regions. We can solve it by considering, cases, however. Start
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with the z < z∗ region then the L becomes

L | z < z∗ = c− n

1 + 1/e

( z
n

)1+1/e

+ λ [z (1− t) +R− c]

Lz | z < z∗ = −n
(

1

n

)1+1/e

z1/e + λ (1− t) = 0

n (n)−1−1/e z1/e = λ (1− t)
n−1/ez1/e = λ (1− t)( z

n

)1/e

= λ (1− t)
z

n
= λe (1− t)e

z = nλe (1− t)e

Since we know that λ = 1 the optimal value when z < z∗ is

z = n (1− t)e

We can follow the same steps for the L | z > z∗ and will do so carefully because this can
get confusing

L | z > z∗ = c− n

1 + 1/e

( z
n

)1+1/e

+ λ [z (1− t) + ∆T +R− c]

Lz | z > z∗ = −n
(

1

n

)1+1/e

z1/e + λ (1− t) = 0

n (n)−1−1/e z1/e = λ (1− t)
n−1/ez1/e = λ (1− t)( z

n

)1/e

= λ (1− t)
z

n
= λe (1− t)e

z = nλe (1− t)e

z = n (1− t)e

The solution to the case when z = z∗ is trivial because that’s just it. This implies that
the casewise optimal solution is therefore
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z =


n (1− t)e z < z∗

z∗ z = z∗

n (1− t)e z > z∗
(54)

Our goal is to find the person with highest ability n that optimizes constrained utility by
reporting z = z∗. Because the agent reports z = z∗, we can be sure that constrained utility is
maximized at that point. If the agent is indifferent between reporting z = z∗ and facing t
plus ∆T or reporting z = n (1− t)e and facing that same tax rate t plus ∆T , given that they
are optimizing at z∗, that means we only need to compare the alternate budget constraints
which must provide the same resources in each case. The general budget constraint is

c = z (1− t) + ∆T1 (z > z∗) +R

The agent must have the same resources from reporting either case so this means we
compare

c (z = z∗, n | t,∆T ) = c (z = n (1− t)e , n | t,∆T )

z∗ (1− t) + ∆T +R = n (1− t)e (1− t) + ∆T +R

z∗ (1− t1) = n (1− t1)e (1− t1)

z∗ (1− t1) = n (1− t1)1+e

z∗ = n (1− t1)e

This might be easier to see by consider the full Lagrangian when we use the FOC w.r.t. c
to get that λ = 1

L (z∗ = z, n, c) = L (z∗ = n (1− t1)e , n, c)

− n

1 + 1/e

(
z∗

n

)1+1/e

+ z∗ (1− t1) +R = − n

1 + 1/e

(
z∗

n

)1+1/e

+ n (1− t1)1+e +R

z∗ (1− t1) = n (1− t1)1+e

z∗ = n (1− t1)e

Our goal is to find the person with highest ability n that is indifferent between reporting
z = z∗ or reporting z = n (1− t)e and facing the tax notch ∆T . z > z∗. We know that
reporting z = z∗ is optimal so we know the Lagrangian is

L (z∗ = z, n, c) = c− n

1 + 1/e

(
z∗

n

)1+1/e

+ λ [z∗ (1− t) +R− c]

= − n

1 + 1/e

(
z∗

n

)1+1/e

+ z∗ (1− t) +R
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In which the last step comes from the fact that the FOC w.r.t. c ensures λ = 1. This
person should get the same utility from reporting z = n (1− t)e

L (z∗ = n (1− t)e , n, c) = c− n

1 + 1/e

(
n (1− t)e

n

)1+1/e

+ λ [n (1− t)e (1− t) + ∆T +R− c]

= c− n

1 + 1/e
((1− t)e)1+1/e

+ λ
[
n (1− t)1+e + ∆T +R− c

]
= c− n

1 + 1/e
(1− t)1+e + λ

[
n (1− t)1+e + ∆T +R− c

]
= − n

1 + 1/e
(1− t)1+e + n (1− t)1+e + ∆T +R

Setting these equal and solving for n

L (z∗ = z, n, c) = L (z∗ = n (1− t)e , n, c)

− n

1 + 1/e

(
z∗

n

)1+1/e

+ z∗ (1− t) +R = − n

1 + 1/e
(1− t)1+e + n (1− t)1+e + ∆T +R

− n

1 + 1/e

(
z∗

n

)1+1/e

+ z∗ (1− t) = − n

1 + 1/e
(1− t)1+e + n (1− t)1+e + ∆T

− n

1 + 1/e
(z∗)1+1/e n−1−1/e + z∗ (1− t) = − n

1 + 1/e
(1− t)1+e + n (1− t)1+e + ∆T

−(z∗)1+1/e

1 + 1/e
n−1/e + z∗ (1− t) = −n

(
1

1 + 1/e
(1− t)1+e + (1− t)1+e

)
+ ∆T

−(z∗)1+1/e

1 + 1/e
n−1/e + z∗ (1− t) = −n

(
1

1 + 1/e
(1− t)1+e + (1− t)1+e

)
+ ∆T

We also know from the FOC w.r.t. c that λ = 1 so this simplfies to

We also know from the FOC w.r.t. c that λ = 1 so this simplfies to

L (n, c) = c− n

1 + 1/e

(
z∗

n

)1+1/e

+ z∗ (1− t) +R− c

= − n

1 + 1/e

(
z∗

n

)1+1/e

+ z∗ (1− t) +R

We also know that the lower bound person also reports the same

L (ñ) = c− ñ

1 + 1/e

(
z∗

ñ

)1+1/e

+ λ [z∗ (1− t) +R− c]
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L (n) = c− n

1 + 1/e

(
z∗

n

)1+1/e

+ λ [z∗ (1− t) +R− c]

Postulate that the region is this

n = [z∗/ (1− t)e + ∆T, z∗/ (1− t)e]

Nate said that the budget constraint alone is not the right thing to look at and I believe
that is a correct statement.

The steps one would take in the kinked case are simply

L (z∗ = z, n, c | t0) = L (z∗ = n (1− t1)e , n, c | t0)

− n

1 + 1/e

(
z∗

n

)1+1/e

+ z∗ (1− t0) +R = − n

1 + 1/e

(
n (1− t1)e

n

)1+1/e

+ n (1− t1)e (1− t0) +R

− n

1 + 1/e

(
z∗

n

)1+1/e

+ z∗ (1− t0) = − n

1 + 1/e

(
n (1− t1)e

n

)1+1/e

+ n (1− t1)e (1− t0)

So clearly the answer is z∗ = n (1− t1)e. Do the same for the lower kink.
So then in the notches case

L (z∗ = z, n, c | t,∆T = 0) = L (z∗ = n (1− t1)e , n, c | t,∆T 6= 0)

− n

1 + 1/e

(
z∗

n

)1+1/e

+ z∗ (1− t) +R = − n

1 + 1/e

(
n (1− t)e

n

)1+1/e

+ n (1− t)e (1− t) + ∆T +R

− n

1 + 1/e

(
z∗

n

)1+1/e

+ z∗ (1− t) = − n

1 + 1/e

(
n (1− t)e

n

)1+1/e

+ n (1− t)e+1 + ∆T

− n

1 + 1/e

(
z∗

n

)1+1/e

+ z∗ (1− t) = n(1− t)1+e

(
1 + 1/e

1 + 1/e
− 1

1 + 1/e

)
+ ∆T

− n

1 + 1/e

(
z∗

n

)1+1/e

+ z∗ (1− t) = n(1− t)1+e 1

1 + e
+ ∆T

So the goal is to try to write this expression as a simple closed form algebraic expression.
Find n such that these two equations are equal

L (z∗ = z, n, c | t,∆T = 0) = L (z = n (1− t)e , n, c | t,∆T = 0)

− n

1 + 1/e

(
z∗

n

)1+1/e

+ z∗ (1− t) +R = − n

1 + 1/e

(
n (1− t)e

n

)1+1/e

+ n (1− t)e (1− t) +R

− n

1 + 1/e

(
z∗

n

)1+1/e

+ z∗ (1− t) = − n

1 + 1/e

(
n (1− t)e

n

)1+1/e

+ n (1− t)e (1− t)

so the lower bound n has to be z∗ = n (1− t)e.
Notice that both z+ and z− are counterfactual levels of reported income that will
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NEVER be observed even if all the assumptions of the model are correct. Saez writes
counterfactual ∆z∗ as equation (3)

∆z∗

z∗
=

(
1− t0
1− t1

)e
− 1

This can be rewritten as

e =

ln

(
1 +

∆z∗

z∗

)
ln

(
1− t0
1− t1

)
Now, we let

∆z∗ = B/f−() =
F ()− F ()

f−()
≡ b

Which allows us to write with the approximation that log(1 + x) = x,

e =
b

Kln

(
1− t0
1− t1

)
which is exactly the equation (6) in Chetty et al. (2011).

That person has ability n = z∗/ (1− t1)e. Remember that utility maximization with his
utility function under a linear tax implied they would report z = n (1− t)e. Hence, if this
person had faced a linear tax of t0, they would report

z+ = n+ (1− t0)e

z+ = z∗
(

1− t0
1− t1

)e
Similarly, the lowest ability person that reports z = z∗ has ability n− = z∗/ (1− t0)e. If

they had faced the linear tax of t0, they would report

z− = n− (1− t0)e

z− = z∗

Combining these two expression defines

∆z∗ ≡ z+ − z−

= z∗
(

1− t0
1− t1

)e
− z∗
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G Evasion problem

Saez problem

max
Ci,Li

Ci − (N∗i )−1/ε L
1+ 1

ε
i

1 + 1/ε

s.t. Yi = Li

Li = Hθ
i R

1−θ
i

Ci = Yi − t0Ri + (t0 − t1) (Ri −Dj)1 (Ri > Dj)

The agent sells into the labor market quantity Li but is only taxed on reported quantity
of labor Ri and not on hidden quantity of labor Hi. Notice we have already assumed that
the numeraire is the real wage which is equal to one. Substituion will allow us to write

max
Ci,Hi,Ri

Ci − (N∗i )−1/ε

(
Hθ
i R

1−θ
i

)1+ 1
ε

1 + 1/ε

s.t. Ci = Hθ
i R

1−θ
i − t0Ri + (t0 − t1) (Ri −Dj)1 (Ri > Dj)

The Lagrangian becomes

L = Ci−(N∗i )−1/ε

(
Hθ
i R

1−θ
i

)1+ 1
ε

1 + 1/ε
+λ

(
Hθ
i R

1−θ
i − t0Ri + (t0 − t1) (Ri −Dj)1 (Ri > Dj)− Ci

)
Diff w.r.t. consumption to get

Lc = 1− λ = 0

Notice that regardless of the level of reported income Ri the Lagrangian as a function of
Hi remains the same. As such, it is always the case that diff w.r.t. Hi gives

LH = − (N∗i )−1/ε (Hθ
i R

1−θ
i

) 1
ε Hθ−1

i R1−θ
i θ + λHθ−1

i R1−θ
i θ = 0

λHθ−1
i R1−θ

i θ = (N∗i )−1/ε (Hθ
i R

1−θ
i

) 1
ε Hθ−1

i R1−θ
i θ

λθ = (N∗i )−1/ε (Hθ
i R

1−θ
i

) 1
ε θ

I guess everything is pinned down by this equation

λ = (N∗i )−1/ε (Hθ
i R

1−θ
i

) 1
ε

1 = (N∗i )−1/ε (Hθ
i R

1−θ
i

) 1
ε

(N∗i )1/ε =
(
Hθ
i R

1−θ
i

) 1
ε

N∗i = Hθ
i R

1−θ
i

N∗i = Li
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And so we did not generate a kink in reported income. Maybe if we use CES of Hi and
Riwe will be able to figure it out.

The Lagrangian differs for different values of the reported hours work, however. Consider
the region in which Ri < Dj

L | Ri ≤ Dj = Ci − (N∗i )−1/ε

(
Hθ
i R

1−θ
i

)1+ 1
ε

1 + 1/ε
+ λ

(
Hθ
i R

1−θ
i − t0Ri − Ci

)
Diff w.r.t. Ri for Ri ≤ Dj to get

LR | Ri ≤ Dj = − (N∗i )−1/ε (Hθ
i R

1−θ
i

) 1
ε Hθ

i R
−θ
i (1− θ) + λHθ

i R
−θ
i (1− θ)− λt0 = 0

−λHθ
i R
−θ
i (1− θ) + λHθ

i R
−θ
i (1− θ)− λt0 = 0

−Hθ
i R
−θ
i (1− θ) +Hθ

i R
−θ
i (1− θ)− t0 = 0

t0 = 0

which I think means we have a corner solution? Lagrangian for Ri > Dj

L | Ri > Dj = Ci − (N∗i )−1/ε

(
Hθ
i R

1−θ
i

)1+ 1
ε

1 + 1/ε
+ λ

(
Hθ
i R

1−θ
i − t1Ri − Ci

)
Diff w.r.t. Ri for Ri > Dj to get

LR | Ri > Dj = − (N∗i )−1/ε (Hθ
i R

1−θ
i

) 1
ε Hθ

i R
−θ
i (1− θ) + λHθ

i R
−θ
i (1− θ)− λt1 = 0

−λHθ
i R
−θ
i (1− θ) + λHθ

i R
−θ
i (1− θ)− λt1 = 0

−Hθ
i R
−θ
i (1− θ) +Hθ

i R
−θ
i (1− θ)− t1 = 0

t1 = 0

LR | Ri > Dj = − (N∗i )−1/ε (Hθ
i R

1−θ
i

) 1
ε Hθ

i R
−θ
i (1− θ) + λHθ

i R
−θ
i (1− θ) = 0

call Hi work hours for which you are paid Wi and call Ri hours that you spend evading
taxes. You get paid Wi for before taxes for each hour worked. You get no wage income for
hours spent evading taxes but you do get to pay less taxes so I think the implicit wage for
that is 1− t

max
Ci,Li,Ri

Ci − (N∗i )−1/ε L
1+ 1

ε
i

1 + 1/ε

s.t. Yi = WiLi

Li = Hθ
i R

1−θ
i

Ci = (1− t0)Yi + (t0 − t1) (Yj −Dj)1 (Yi > Dj)
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Substitution will give you

max
Ci,Hi,Ri

Ci − (N∗i )−1/ε

(
Hθ
i R

1−θ
i

)1+ 1
ε

1 + 1/ε

s.t. Yi = WiHi

Ci = (1− t0)Yi + (t0 − t1) (Yj −Dj)1 (Yi > Dj)

H Optimizing frictions: a policy relevant elasticity

H.1 Previous incorporations of optimizing frictions

Models without optimizing frictions produces stark predictions on the observed distribution
of Yi around the discontinuity. For example, models with a notch predict that for some
region to the right of the notch there will be zero density, a hole and models with a kink
predict that agents will move exactly to the kink point and the excess mass will occur only
at the kink. In practice neither of these predictions are true in the data: to the right of a
notch we observe mass where there should not be any and we observe excess mass in a
window around a kink, not only at the kink point.

Most previous work explains the difference between the model’s predictions and the
observed data by appealing to optimizing frictions that limit agents’ ability to adjust or
adjust finely enough to locate exactly at a discontinuity (see, e.g., Chetty, Friedman, Olsen,
and Pistaferri, 2011; Gelber, Jones, and Sacks, 2013). Allowing for optimizing frictions is
critical for identifying the preference parameters in the model. In appendix XX, we
demonstrate that as a practical matter there are large deviations between the true and
estimated preference parameters in the model when the data generating process includes
optimizing frictions but the estimator does not, Therefore, accounting for optimizing
frictions is a necessary condition for any estimator using discontinuities.

Current methods of incorporating optimizing frictions have been criticized for being ad
hoc. For example, many studies using kink points arbitrarily choose a window around the
kink from which to estimate the excess mass. The implicit assumption is that optimizing
frictions cause agents to bunch around rather than exactly at the kink point. Unfortunately,
the choice of window exactly identifies the preference parameters. Said differently, almost
any positive value for a preference parameter can be estimated given a different window. We
demonstrate this point through a series of examples of current methods in Appendix XX.

Chetty, Friedman, Olsen, and Pistaferri (2011) demonstrates that current bunching
methods produce elasticity estimates that cannot be used for policy inference precisely
because they do not adequately account for optimizing frictions. Chetty, Friedman, Olsen,
and Pistaferri (2011) demonstrate this point by showing that current bunching methods
have some peculiar implications. First, if the elasticity estimate is recovering the true
elasticity, then the estimate should be invariant to the size of the tax difference. Chetty,
Friedman, Olsen, and Pistaferri (2011) show, however, that the elasticity estimates from
current bunching estimators increase with the size of the change in tax rates at the
discontinuity. This prediction arises in their model because individuals only move to the
discontinuity if the gains are larger than the fixed costs of moving. This implies that more
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individuals move and bunch when the tax rate difference is larger because that is when the
gains from moving are larger.

To produce estimates of the elasticity that are useful for policy, we incorporate
optimizing frictions into the model and estimator. As a test that our estimator produces
policy relevant elasticities---those that recover the true elasticity---we show that our estimate
is invariant to the size of the tax change.

H.2 Incorporating optimizing frictions into the model

To construct an estimator that recovers policy relevant elasticities, we incorporate
optimizing frictions in the model in two ways. The first, is a heterogeneous fixed cost of
adjustment that causes some agents to not adjust. Specifically, with probability πd, ζi = 0
and the agent’s fixed costs are sufficiently low that the agent re-optimizes and with
probability (1− πd), ζi = 1 and the agent’s fixed costs are sufficiently high that the agent
does not re-optimize. Most studies focused on kinks assume πd = 1, while studies focused on
notches consider πd ∈ (0, 1) to account for the mass of agents just right of the notch.

We also model optimizing frictions as an error term that causes desired demand to differ
from actual demand according to the parameter ξ, with cumulative distribution function
Fξ(ξi) and probability distribution fξ(ξi). The optimizing frictions, ξi are unknown to
individuals when they choose Yi and capture, for example when Yi is taxable income, the
lumpiness of pay and deductions, bonuses, forced overtime, forced short-time, and
uncertainty that may exist over items like capital gains. This modeling technique also
captures the possibility that individuals, especially in the short-run, may only have discrete
choices along their budget constraint.

With these optimizing frictions, the log of Yi, defined as yi, with J discontinuities can be
written as,

yi =


dj + ξi n∗i ∈

[
nj, nj

]
and ζi = 0 j = 1, . . . , J

wi + li (sj−1, n
∗
i , ri; ε) + ξi n∗i ∈

(
nj−1, nj

)
and ζi = 1 j = 1, . . . , J

wi + li (sj−1, n
∗
i , ri; ε) + ξi n∗i ∈

(
nj−1, nj

)
j = 1, . . . , J + 1,

(55)

in which n0 ≡ nmin and nJ+1 ≡ nmax. We index these cases by qi,h, which equals one in case
h and zero otherwise such that, qi,1 = 1 if y0,i ∈ (nmin, d1], and zero otherwise; qi,2 = 1 if
y0,i ∈ (d1, d1 + εs0 − εs1] and ζ = 1, and zero otherwise; qi,3 = 1 if y0,i ∈ (d1, d1 + εs0 − εs1]
and ζ = 0, and zero otherwise; and qi,H = 1 if y0,i ∈ (dJ + εsJ−1 − εsJ , nmax) and zero
otherwise, where H = 3J − 2.

H.3 Quasi-linear and Iso-elastic Utility with only Slope Changes

When individuals maximize iso-elastic and quasilinear utility with a budget constraint that
has kinks, demand can be written as,

yi =


dj + ξi if y0,i ∈ [dj, dj + εsj−1 − εsj] and ζi = 0 for j = 1, ..., J

ni + εsj−1 + ξi if y0,i ∈ [dj, dj + εsj−1 − εsj] and ζi = 1 for j = 1, ..., J

ni + εsj−1 + ξi if y0,i ∈ [dj−1 + εsj−2 − εsj−1, dj, ] for j = 1, ..., J + 1
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where d0 ≡ nmin, and dJ+1 ≡ nmax.
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