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Abstract
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1 Introduction

The production landscape of many manufacturing industries is dominated by multi-product

firms, which operate across a diverse range of product lines. However, existing empirical

studies that explore the determinants of firm performance have primarily focused on analyzing

variations across different firms, such as heterogeneity in productivity levels and demand

characteristics (e.g., Foster et al., 2008; Pozzi and Schivardi, 2016; Kumar and Zhang, 2019).

Consequently, there remains a considerable gap in the understanding of the factors that drive

within-firm heterogeneity and resource reallocation, as well as their subsequent impact on firm

performance and growth. This knowledge gap is mainly due to methodological limitations and

data constraints, which hinder the accurate estimation of different aspects of heterogeneity

at the firm-product level.

This paper introduces an innovative method to estimate productivity and quality (product

appeal) at the firm-product level, along with the transformation function and demand

parameters. This method constructs a unique one-to-one mapping from observed data to

unobservable variables by leveraging firm optimization conditions. This provides distinct

advantages compared to the recent methods (e.g., Dhyne et al., 2022; Orr, 2022; Valmari,

2022). First, it eliminates the need for imputing intra-firm input allocations. Second, it

does not impose restrictions on productivity evolution, allowing for flexibility in exploring

complex productivity dynamics after estimation. Third, it is scalable to handle a large number

of products. Fourth, it addresses the estimation bias caused by heterogeneous firm-level

intermediate input prices, which are usually unobservable in commonly available data sets.

Drawing on comprehensive firm-product-level data from three major industries in the

Mexican manufacturing sector, we employ this method to study the trade-off between

productivity and quality within firms and the role of product scope in shaping firm growth

through intra-firm resource reallocation. While we implement the approach for a setup with

a specific functional form, our methodology is readily extendable to more general settings

and broader applications.

In modelling the production side, our method is designed to address the challenges

commonly faced in estimating multi-product production functions. The recent strand of

production function estimation methodologies implicitly assumes that each firm produces a

single product (e.g., Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015;

Gandhi et al., 2020). In this context, the input allocation is observable to researchers and each

firm only has a single dimension of unobservable productivity, which can be controlled for by

an observable proxy. Multi-product firms, on the contrary, may produce different products

and thus have different levels of productivity in these products, even within the same firm.
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Extending the proxy-based methods to the context of multi-product firms requires at least

the same number of proxies as the number of products (cf., Dhyne et al., 2022). Moreover,

researchers do not observe the within-firm division of inputs used to produce different products

because firms usually only report total inputs. The potentially heterogeneous ability of input

sharing (e.g., machinery and workers) across product lines within firms (e.g., Cairncross et al.,

2023), which is observable to the firms but is unobservable to researchers, further complicates

the problem.1 Finally, intermediate input prices, which significantly vary across firms and

over time due to various reasons such as quality differentiation, bargaining power in the

input market, transport costs, and suppliers’ marginal cost as documented by Atalay (2014)

using US Census Bureau data, should be controlled for in the estimation to avoid biased

estimates of production function and input elasticities (i.e., input price bias as emphasized in

Ornaghi, 2006; De Loecker et al., 2016; Grieco et al., 2016). However, only input expenditure

(rather than input price and input quantity) is observable to researchers at the firm level in

commonly available data sets.

To address these issues, we model the production technology using a constant elasticity of

substitution (CES) transformation function, which transforms inputs into different products.

The inputs can be shared in production across products within the same firm. Each product

is associated with a potentially different level of physical productivity (i.e., quantity-based

productivity, as in Foster et al., 2008).2 The firm observes these productivity levels before

making input and output decisions to maximize profits. In the spirit of Grieco et al. (2016),

we show that the optimization conditions implied from our model can always be inverted to

form an explicit one-to-one mapping from observed input and output decisions to unobserved

productivity at the firm-product level (regardless of the number of products), while controlling

for unobserved intermediate input prices. We use the inverted relationship to substitute

unobserved productivity to estimate the parameters of the transformation function. Once

the parameters are estimated, we compute productivity at the firm-product level from the

one-to-one mapping.

In modelling the demand side, we adopt a commonly used CES demand function.3 The

firm’s products are chosen from a set of horizontally differentiated categories. Within each

product category, each firm’s product variety is vertically differentiated according to its

quality level. Because the optimal product prices are chosen after the firm’s decisions on

1For example, a printing firm may use the same design software to create multiple products, such as logos
and product labels; workers with specialized skills, such as pattern makers and shoe designers, may be used
across different product lines within the same footwear firm; in pharmaceutical industries, a firm may use the
same reactors and mixing tanks to produce different products, by adjusting the process parameters.

2We refer to physical productivity as simply “productivity” in this paper unless explicitly stated otherwise.
3Our method is extendable to a general demand function which explicitly allows for the complementarity

or substitutability of products, as described in Online Appendix A.
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the product quality levels, we face a classic endogeneity problem in estimating the price

elasticity of demand. The traditional solution is to use cost shifters (such as capital stock) as

instrumental variables (IVs) for the price to estimate the demand function directly. However,

if the cost of producing high-quality products is higher as suggested by the recent literature

(e.g., Grieco and McDevitt, 2017; Forlani et al., 2023; Li et al., 2023), then cost shifters may

still be correlated with quality. Thus, we depart from the existing literature to examine the

advantage offered by intra-firm decisions in multi-product firms – profit maximization of the

firm implies a relationship between the revenues of products within the same firm. This

relationship depends on the demand elasticities and intra-firm relative quality differences

(as opposed to quality levels), which can be instrumented by the commonly used firm-level

cost shifters. Therefore, we use this relationship to help identify the demand elasticities.

We use Monte Carlo exercises to demonstrate that this approach is able to recover the true

parameters well. After the estimation, we compute quality as the residual of demand after

controlling for price in the spirit of Khandelwal (2010).4

We apply our method to establishment-level panel production data from three major

Mexican manufacturing industries (i.e., footwear, printing, and pharmaceuticals) that record

prices and quantities at the firm-product level along with rich input data at the firm level.

Multi-product production is an essential feature of the firms in our sample. Multi-product

firms account for around 65% of the total number of firms and 86% of total revenues, and

their average number of products is 6.7 per year, albeit with differences between industries.

Within each industry, the markets for different products (e.g., women’s shoes vs. men’s shoes

in the footwear industry) are largely segmented. Nevertheless, for each product, firms’ output

is vertically differentiated, as evidenced by the large dispersion in prices. These features are

consistent with the model’s assumption of a monopolistically competitive market structure

with vertically differentiated products.

After estimation, we first follow the literature (e.g., Melitz, 2000) to construct a (firm-

product) quality-adjusted productivity (ATFP) measure that accounts for heterogeneity in

both productivity and quality. We find significant dispersion of ATFP across firms, even

conditional on the product. More importantly, both components of ATFP (i.e., productivity

and quality), are important for the within-firm performance of multi-product firms. Products

closer to the core competence of the firm (defined by the highest revenue within firms) have

both higher productivity and higher quality.

4The residual of demand is essentially demand heterogeneity which embodies a set of demand shifters.
We leverage the rich fixed effects offered by the firm-product level data to refine the demand residual as
a measure of quality in the empirical exercises. Nonetheless, we acknowledge that the refined measure of
quality may still have different components, such as product appeal perceived by consumers, if they vary at
the firm-product-time level.
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These different dimensions of within-firm heterogeneity are not, however, unrelated to each

other. Within a firm, improving quality at the product level comes at the cost of reducing

productivity. This result is broadly consistent with the emerging literature highlighting

the trade-off across firms between these two unique dimensions of firm heterogeneity (e.g.,

Jaumandreu and Yin, 2014; Grieco and McDevitt, 2017; Roberts et al., 2018; Atkin et al.,

2019; Orr, 2022; Eslava et al., 2023; Forlani et al., 2023; Li et al., 2023).5 In the industries

we consider, a 1 percent increase in quality reduces productivity by 0.234 percent on average,

holding all other variables constant. Moreover, this trade-off is heterogeneous – while it is

more costly to produce a high-quality product, long experience in producing a particular

product allows the firm to improve quality with less sacrifice in efficiency.

Quantitatively, the cost of quality bears significant implications for firm productivity

growth and intra-firm resource allocation. A reduction in the cost of quality not only directly

increases the firm’s ATFP but also indirectly influences it through the firm’s endogenous

reallocation of resources towards the production of higher-quality products. This is due to

the positive relationship observed between ATFP and product quality within the firm. In a

counterfactual analysis, we find that a 1 percent reduction in the cost of quality corresponds

to an average 2.836 percent improvement in firm-level ATFP. Notably, a substantial 30.1

percent of this improvement can be attributed to the within-firm reallocation of production

towards high-quality, high-ATFP products.

We show that the impact of the quality cost reduction on firm performance is particularly

pronounced for multi-product firms with larger product scope. Their ability to leverage a

larger range of products through reallocation allows them to capitalize on the opportunities

arising from reduced quality cost, thus boosting their overall productivity. This result

uncovers a novel mechanism for productivity growth for multi-product firms, which dominate

manufacturing production.

In terms of methodology, our paper builds on recent advances in the estimation of

heterogeneous productivity of multi-product firms. In addressing the common data challenge

of input data being observable only at the firm level, while outputs and revenues are reported

separately by product, the literature has evolved into two main approaches. The first

approach, pioneered by De Loecker et al. (2016), characterizes multi-product production

as a collection of single-product production functions, coupled with a rule for allocating

firm inputs to each of these functions. Subsequent studies have extended this approach. In

particular, Orr (2022) models product lines sharing the same technology (i.e., production

5Intuitively, producing one unit of a high-quality product may require more (or longer) production
processes, better (or more specialized, exclusive) machinery, higher quality (or more) intermediate materials,
and higher standards of quality control, all of which lead to a lower quantity of output holding inputs fixed
and consequently an increase in marginal cost of production (or lower productivity, equivalently).
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parameters) but with individual efficiency shocks, and shows how demand data can be used

to assist estimation under profit maximization conditions. Valmari (2022) develops a similar

framework, incorporating flexible production parameters across product-specific production

functions. Chen and Liao (2022) generalize the previous papers by allowing single-product

firms and multi-product firms to have different production functions and by estimating both

non-parametric and parametric production functions for multi-product firms. In contrast,

the second approach, led by Dhyne et al. (2022), departs from the assumption that multi-

product production is a collection of single-product firms. They introduce a transformation

production function and show how it can be used to recover the production frontier and

estimate firm-product-specific marginal costs, taking into account complementarities and

spillovers in multi-product production.

Our methodology integrates the strengths of both approaches to overcome their respective

limitations. First, we model multi-product production using a transformation production

function, similar to Dhyne et al. (2022). This avoids the need to allocate firm-level inputs,

as in Orr (2022) and Valmari (2022), and allows for intra-firm input sharing across product

lines, which may contribute to economies of scope in multi-product production. Second,

in addressing unobserved firm-product productivity, we adopt the profit maximization

assumption, similar to Orr (2022) and Valmari (2022). However, instead of imputing input

allocation shares, we use the profit-maximizing conditions to establish a one-to-one mapping

from observed firm decisions to unobserved productivity, extending the insights of Grieco et al.

(2016, 2022), Harrigan et al. (2021) and Li and Zhang (2022) to the context of multi-product

firms. Importantly, the number of profit-maximizing conditions, which naturally increase

with the number of products, ensures the scalability of our method. This differs from Dhyne

et al. (2022), whose method requires a separate proxy for each additional firm-product-level

productivity. Rather, it is more similar to recent approaches to identify markdowns (Morlacco,

2020; Caselli et al., 2021; Kirov and Traina, 2023) or factor-augmenting productivity (Demirer,

2022; Raval, 2023) using necessary conditions for optimality with respect to multiple flexible

inputs. Third, our method addresses the bias due to unobserved firm-level heterogeneity in

input prices without requiring the availability of input price data. This is in contrast to the

existing methods (e.g., Orr, 2022; Valmari, 2022), which typically require access to such data.

Finally, our method does not rely on modelling the evolution of productivity, which offers

a distinct advantage in exploring the evolution of productivity after estimation. Such an

advantage is particularly beneficial in studying complex (e.g., interdependent) productivity

dynamics, factors that endogenously shape the productivity trajectory (e.g., Chen et al.,

2021), and frequent product turnover decisions, such as for exported products, where the

observation of products is truncated by latent variables.
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Our empirical application contributes to the emerging literature analyzing the trade-

off between productivity and quality (i.e., the cost of quality). Focusing on the healthcare

industry, Grieco and McDevitt (2017) show that reducing the quality standards of a healthcare

center can increase its patient load. Atkin et al. (2019) reveal a reverse correlation between

quantity and quality among rug-makers in Egypt, drawing insights from data that include

direct quality assessments. Forlani et al. (2023) document a strong negative correlation

between demand and quantity-based productivity in various Belgian manufacturing industries.

Using an objective measure of output quality, Li et al. (2023) find that about half of the

benefits of quality are offset by the cost of producing the quality in the Chinese steel industry.

These papers document such a trade-off across firms. Our paper finds a similar trade-off

at the firm-product level and shows that the trade-off diminishes as firms gain experience

in manufacturing. To this end, our analysis is consistent with the negative relationship

between productivity and “product appeal” documented at the same level of disaggregation

by Orr (2022). Nonetheless, after taking both the cost and the benefit of quality into account,

ATFP is documented to be positively correlated with quality. This result is consistent with

endogenous quality choice models (Kugler and Verhoogen, 2009, 2012) and empirical analysis

using an objective quality measure by Li et al. (2023).

Finally, our paper is related to a large literature on resource reallocation, which focuses on

across-firm analyses and shows that much of the aggregate productivity growth is attributable

to the resource reallocation towards more productive firms (e.g., Baily et al., 1992; Bartelsman

and Doms, 2000; Aw et al., 2001; Foster et al., 2008; Syverson, 2011; Collard-Wexler and

De Loecker, 2015). Our counterfactual analysis shows that there can be a substantial

contribution to productivity growth due to within-firm resource reallocation – a mechanism

that is emphasized in the recent literature studying multi-product firms (e.g., Mayer et al.,

2021). We focus on the channel of the cost of quality and document a positive relationship

between product scope and the contribution of intra-firm resource reallocation. This result

illustrates the importance of intra-firm resource reallocation within multi-product firms due

to quality differences as a novel channel affecting overall productivity at the firm level.

In the rest of the paper, Section 2 describes our model with the production and demand

functions and the firm’s endogenous decisions on input and output. In Section 3 we develop

the estimation methodology. Section 4 describes the data used in the estimation. Section

5 presents the estimation results. Section 6 illustrates the trade-off between productivity

and quality, while Section 7 quantitatively assesses the significance of the cost of quality in

intra-firm resource reallocation. We conclude in Section 8.
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2 Model

This section develops a framework for describing a firm’s static input and output decisions,

which underpins our empirical estimation by leveraging the optimization conditions implied by

this model.6 Although we present a specific functional form in the main text, our identification

strategy is not dependent on this assumption. Our methodology can be applied to more

general settings, explicitly accounting for product complementarity or substitution in demand

and production, as demonstrated in Online Appendix A.

Consider an industry with J firms indexed by j = 1, 2, . . . , J . There is a total of N

products, indexed by n = 1, 2, . . . , N , that firms can choose to produce. The timeline of

the decisions is as follows. At the beginning of period t, the set of products that firm j has

decided (at the end of the previous period) to produce in this period is Λjt. Each product

n ∈ Λjt is associated with a level of technical efficiency ωjnt and a level of quality ξjnt, both

of which have been determined and observed by the firm at the end of the previous period.

The firm’s capital stock is also determined in the previous period via an investment decision.

The firm’s static decisions in the current period consist of the material input, labor input,

and quantities of individual products to maximize its total period profit subject to demand

and production functions, after observing the material price, wage rate, and capital stock.

At the end of period t, the firm makes dynamic decisions on the capital stock and the set of

products to be produced with their levels of product quality and technical efficiency for the

following period, after observing the associated adjustment or investment costs.

2.1 Demand

The entire set of products that the firm can choose to produce is divided into N horizontal

categories, such as women’s and men’s shoes. For each product category n ∈ {1, 2, . . . , N},
the output of each firm is vertically differentiated according to its choice of quality level Ξjnt.

This means that, although the demand for each of the N product categories is segmented,

there is monopolistic competition across firms that produce vertically differentiated products

in the same category. This assumption is also adopted by De Loecker (2011) and Valmari

(2022) in modelling the demand functions in the multi-product context.7

6The firm’s static choices are made conditional on a set of dynamic decisions, including output quality,
technical efficiency, product scope, and investment. Online Appendix B outlines the firm’s dynamic decisions
related to these choices, offering conceptual insights into how these choices are endogenously determined.
While we do not estimate the complex dynamic model due to the high dimensionality of the state variables,
it serves to clarify the firm’s dynamic decision-making process.

7While we extend our model to allow for a flexible, general demand system to account for potential
complementarity and substitution on the demand side in Online Appendix A, we maintain a simpler demand
function assumption in the main text of the paper.
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Specifically, for each product category n, a representative consumer has constant elasticity

of substitution (CES) preferences in terms of both the quality and the quantity of the products

offered by firms:8

Unt =

[∑
j

(Ξ
1

ηn−1

jnt Qjnt)
ηn−1
ηn

] ηn
ηn−1

, (1)

where ηn > 1 is the elasticity of substitution across the varieties offered by the firms. Qjnt is

the physical quantity and Ξjnt is the product quality of firm j in period t, respectively. That

is, the consumer values the quality-adjusted quantity of the product, Ξ
1

ηn−1

jnt Qjnt, which forms

the basis for constructing the quality-adjusted productivity in Section 5.

Given the consumer’s total expenditure Bnt and the product price Pjnt, the consumer’s

utility maximization problem implies the following demand function for product n from firm

j:

lnQjnt = −ηn lnPjnt + ξjnt + ϕnt + ψjn + vjt, (2)

where ξjnt = lnΞjnt. Intuitively, a higher quality level shifts the demand curve upwards.

Beyond quality, three other components also influence demand. First, ϕnt = ln

(
Bnt∑

j ΞjntP
1−ηn
jnt

)
is a product-specific expenditure index that depends on macroeconomic conditions captured

in Bnt such as consumer income and market size in period t. Second, ψjn represents factors

that affect demand at the firm-product level but do not vary over time such as consumers’

subjective tastes, brand image related to specific products, number (or variety) of subcategories

contained in each product category under our classification and product measurement units

(e.g., grams vs. liters).9 Finally, vjt captures the demand heterogeneity such as firm effort

in marketing that varies by firm and year. For demonstration, we summarize the structural

terms that shift the demand function as ξ̃jnt = ξjnt + ϕnt + ψjn + vjt. The firm observes ξ̃jnt

for all products before making production decisions.

Remark: Essentially, ξ̃jnt is a demand shifter, which captures all sorts of demand

heterogeneity that influences product demand but is not accounted for by product prices.

Empirically, ξ̃jnt is usually referred to as “perceived product appeal/demand” (e.g., Pozzi

and Schivardi, 2016; Orr, 2022; Valmari, 2022; Eslava et al., 2023) or “quality” (e.g., Melitz,

2000; Khandelwal, 2010; Hottman et al., 2016). In our paper, we follow this tradition and

8The power of Ξjnt,
1

ηn−1 , is used to simplify the notation to reach a commonly used demand function

(2). A large literature that treats demand residual as output quality implicitly shares the same setup (e.g.,
Melitz, 2000; Khandelwal, 2010; Pozzi and Schivardi, 2016; Valmari, 2022).

9Units of measurement can be different across product categories. Consequently, the quantities and prices
of different product categories are not readily comparable. In the demand function (2), ψjn absorb such
differences. Similarly, in our empirical analysis in Section 6, we use firm dummies and product dummies to
tease out ξjnt from such differences.
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acknowledge that it embodies quality (ξjnt) as well as non-quality components, such as

consumer tastes, brand/firm image, marketing efforts and market size. Yet, our setting with

multiple-product firms provides us with a rich set of fixed effects at the product-year (ϕnt),

firm-product (ψjn), and firm-year (vjt) levels to control for the non-quality component that

varies at these levels. For this reason, we define χjnt = ϕnt + ψjn + vjt and refer to χjnt

as a demand shock in this paper. Notably, this advantage is not available in the analysis

using firm-level data, and thus it helps to tease out a finer measure of quality (i.e., ξjnt) from

residual demand (i.e., product appeal, ξ̃jnt = ξjnt + χjnt) that is traditionally used as quality.

2.2 Production Technology

We use a transformation function to model the production technology. Specifically, given the

set of products to be produced (Λjt) and associated product appeal (ξ̃jnt, n ∈ Λjt), the firm

uses labor (Ljt), material (Mjt), and capital (Kjt) to produce output quantity (Qjnt, n ∈ Λjt)

following a constant elasticity of substitution (CES) transformation function:∑
n∈Λjt

e−ω̃jntQjnt = F (Ljt,Mjt, Kjt) ≡
[
αLL

γ
jt + αMM

γ
jt + αKK

γ
jt

] ρ
γ , (3)

where ω̃jnt is the Hicks neutral, quantity-based productivity (i.e., so-called physical pro-

ductivity, or TFPQ) of firm j in producing product n in period t. In this paper, we use

quantity-based productivity, TFPQ, and productivity interchangeably. γ ≡ σ−1
σ

governs the

elasticity of substitution across inputs, i.e., labor, material, and capital. ρ is a parameter for

the returns to scale in the transformation of inputs into output. αL, αM , and αK are distri-

bution parameters associated with labor, material, and capital, respectively. We normalize

their sum to 1.

Remark: A few features of the transformation function are worth noticing. First, the

transformation function is compatible with the single-product CES production functions

traditionally used in the literature. In the context of multi-product firms, a similar trans-

formation function is adopted by Cairncross et al. (2023), who derive the transformation

function (as a general output distance function) from individual product production functions

with shared inputs across products. In fact, the transformation function (3) in our setup is a

restricted version of the output distance function proposed by Cairncross et al. (2023), which
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includes a CES aggregator on the output side with a parameter θ:10

∑
n∈Λjt

e−ω̃jntQθ
jnt

 1
θ

= F (Ljt,Mjt, Kjt) ≡
[
αLL

γ
jt + αMM

γ
jt + αKK

γ
jt

] ρ
γ . (4)

Parameter θ governs the degree of substitution or complementarity across outputs. Our

restriction in the implementation is θ = 1. This effectively assumes that outputs are perfectly

substitutable and the rate of substitution between any two products is determined by their

relative productivity, which flexibly varies at the firm-product-time level to absorb any

potential substitution or complementarity on the production side. Nonetheless, our model

is extendable to allow for a flexible θ to be estimated and account for substitution or

complementarity as described in Online Appendix A.

Second, although we assume the production parameters of the transformation function are

the same across all firms, regardless of the combinations of products they produce, our model

is readily extendable to accommodate potential differences in technologies for producing

different sets of products. That is, a more flexible specification of the transformation function:∑
n∈Λ(o)

e−ω̃jntQjnt = Fo(Ljt,Mjt, Kjt) ≡
[
αLoL

γo
jt + αMoM

γo
jt + αKoK

γo
jt

] ρo
γo , ∀o ∈ O, (5)

where O is the set of all possible permutations of products (including single products) that

are observed in the data and o ∈ O is one of the permutations. In such a flexible setting,

the production parameters, representing input intensity and substitutability, vary by the

permutation o. This feature is similar to (and potentially more general than) that of Valmari

(2022) who allows the production parameters to vary by product. The estimation strategy

described in Section 3 can be directly applied to each permutation o ∈ O, provided there

are sufficient observations of firm-year pairs in each permutation.11 This flexibility of our

model is due to the distinct feature of our estimation strategy, which does not rely on time

series variation, unlike traditional proxy-based approaches. In contrast, extending existing

methods that rely on the evolution of productivity (e.g., Orr, 2022; Dhyne et al., 2022) to

such a setting is more challenging, especially when the set of products chosen by firms varies

frequently over time.

10In this restricted setup with θ = 1, parameter ρ > 1 implies that there is input sharing in production, as
shown Cairncross et al. (2023).

11For example, suppose there are two permutations of products in the data: firm-year observations either
produce products 1 and 2 or produce products 2 and 3. We can estimate two transformation functions for
each type of firm-year observations, allowing the production parameters to differ. However, in our empirical
exercise, the lack of sufficient observations in each permutation refrains us from implementing such a flexible
model.
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Third, for multi-product firms, the transformation function can be interpreted as the

frontier of joint production of all products, Qjnt, n ∈ Λjt. This interpretation has three

implications: (i) different products are manufactured with the same set of inputs (i.e., labor,

material, and capital); (ii) the inputs can be costlessly transferred across different products

within the firm; (iii) producing more of one product means producing less of another product,

holding inputs fixed. These implications are consistent with the modelling assumptions used

by Dhyne et al. (2022), Orr (2022), and Valmari (2022).

Finally, our transformation function allows for shared inputs or the joint utilization of

inputs across different products, which may contribute to economies of scope in the spirit of

Panzar and Willig (1977, 1981). Input allocation within a firm is not explicitly modelled in our

framework. This methodology is in contrast to the existing methods that rely on imputing the

intra-firm (exclusive) allocation of inputs and thus abstract away from imperfectly divisible

inputs with properties of a public good within a firm.

2.3 Productivity

A key element of our model is the quantity-based productivity ω̃jnt in (3), which varies by

firm, product, and period. While we do not impose restrictions on ω̃jnt to estimate the

parameters in (3), in this subsection we discuss the potential components and evolution of

ω̃jnt to highlight the key differences compared with the assumptions in the existing literature.

Departing from the literature, we unpack productivity into two components:

ω̃jnt = ωjnt − h(ξjnt), (6)

where ωjnt is technical efficiency and h(ξjnt) is a function of product quality ξjnt. It is

crucial to model h(ξjnt) as a part of quantity-based productivity because varieties of the

same product category produced by different firms can be vertically differentiated by quality.

Producing one unit of the high-quality product may require more production procedures

(e.g., longer refinements in the steel industry in Li et al., 2023), better (or more specialized,

exclusive) machinery, higher-quality (or more) intermediate materials, higher standards

of quality control (e.g., lower septic infections rate in the healthcare industry Grieco and

McDevitt, 2017), and extra dedicated workers (e.g., promoting quality or demand rather

than production as discussed by Bond et al., 2021). In turn, this leads to a lower quantity

of output, holding the inputs fixed, and thus it implies an increase in the marginal cost of

production (or equivalently a lower productivity). Thus, we refer to h(ξjnt) as the cost of

quality.12

12Note that the term cost of quality in this paper refers only to the impact of quality on the marginal cost
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As a result, differences in quantity-based productivity can be due to not only technical

efficiency but also the cost of quality. Theoretically, explicitly modelling the cost of quality

h(ξjnt) as a component of productivity allows for a trade-off between product quantity

and quality, conditional on inputs. From an empirical perspective, this also implies that

comparisons of quantity-based productivity across firms and over time require control for

quality differences. Accordingly, we deal with ω̃jnt as a whole rather than its components (ωjnt

and h(ξjnt)) when estimating the model in Section 3. That is, our estimation method does

not rely on how output quality is chosen. We explore the trade-off between (quantity-based)

productivity and output quality in Section 6 after they are estimated.

While our empirical model does not rely on the evolution of productivity, we include it

to explore the relationship between productivity and quality after estimating the empirical

model in Section 6 and to facilitate the modelling of dynamic decisions in Online Appendix

B. Specifically, we model the evolution of ωjnt as a flexible, endogenous Markov process:

ωjnt = gn(ωjt−1, xjt−1) + ϵjnt, ∀n = 1, 2, . . . , N, (7)

where gn(·) is a function specific to product category n, ϵjnt is an innovation term, and

xjt−1 a set of firm-level decisions implemented in t− 1 (such as investment in research and

development as emphasized by Doraszelski and Jaumandreu, 2013) that influences the future

path of technical efficiency. Importantly, ωjt = (ωjt1, ωjt2, . . . , ωjnt) is a vector of firm-product

level technical efficiency of all products of firm j in period t. That is, the evolution process

of the technical efficiency of one product can be influenced by the previous levels of technical

efficiency of other products due to, for instance, intra-firm technology spillovers. The firm

observes the realization of ωjt before making the production decisions specified in Section 2.4.

Remark: Our modelling of the evolution processes is different from that of the literature in

three aspects. First, we model the evolution of the underlying technical efficiency rather than

quantity-based productivity as in the literature. When quality is an endogenous choice made

by the firm and has an impact on quantity-based productivity, quantity-based productivity

may no longer evolve in an auto-regressive way, even if the underlying technical efficiency is

auto-regressive. An example explicitly used to explore the relationship between productivity

and quality is illustrated later by (26) in Section 6.

Second, we allow the evolution processes to be interdependent across products. From a

computational perspective, adopting and estimating such flexible evolution processes would

add a significant computational burden to the existing proxy-based approach in dealing

of production, rather than the overall cost of quality (including research cost for new products with higher
quality, which is more dynamic in nature, or the installation cost of new equipment to produce higher quality
products, which are usually one-time fixed costs).
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with firms producing many products. Fortunately, our estimation methodology utilizes the

first-order conditions of profit maximization to map observable firm input, output, and price

choices to unobservable productivity, without relying on the evolution processes, as will

become clear in Section 3. This feature is in contrast to the existing estimation methods

(e.g., Orr, 2022; Valmari, 2022), which rely on the evolution assumption of productivity and

thus exclude a flexible interdependency of productivity among different products.

Third, the literature usually only models the evolution processes of manufactured products

due to data and computational limitations. But this approach potentially suffers from

an endogenous selection problem because firms only manufacture products when they are

profitable. This problem could be severe if the product turnover (i.e., adding and dropping

products) is frequent. An appropriate approach is to model the evolution processes of all

products. But this imposes a challenge in dealing with the latent variables that determine

product selection. Our estimation methodology saves us from the data and computational

challenges, because it does not rely on the productivity evolution processes.

2.4 Inputs and Outputs Decisions

At the beginning of period t, the firm observes the vector of state variables, which in-

cludes the product scope, capital stock, intermediate input price, wage rate, technical

efficiency, and product quality of all the products. We summarize the state variables in

sjt = (Λjt,ωjt, ξjt, Kjt, PMjt, PLjt,χjt), where ωjt, ξjt and χjt are the vectors of technical

efficiency, product quality and demand shocks of all the products of firm j in period t,

respectively. Note that the observation of technical efficiency and product quality implies

that the firm also knows productivity, ω̃jt, because the firm knows the trade-off (6). PMjt

and PLjt are the firm-level material price and the wage rate, respectively. Importantly, both

of them can be different across firms and vary over time.

The firm’s objective is to maximize its total profit from all products in period t after

observing its state, by optimally choosing the quantity of material (Mjt), the quantity of

labor (Ljt), and the quantities of all the products to be produced (Qjt = {Qjnt}, n ∈ Λjt).

Specifically, the period (static) profit is:

π(sjt) = max
Qjt,Mjt,Ljt

∑
n∈Λjt

PjntQjnt − PMjtMjt − PLjtLjt

subject to: (2) and (3). (8)

Remark: In commonly available data, while PLjt is usually observable to researchers as

the wage rate, PMjt is rarely recorded at the firm level. As documented by Atalay (2014)
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using US Census Bureau data, PMjt can be significantly heterogeneous across firms due

to geography, bargaining power and access to the input market, suppliers’ marginal costs,

etc. It is well understood that such input price heterogeneity should be controlled for in

the production function estimation to avoid bias (i.e., input price bias as emphasized in

Ornaghi, 2006; De Loecker et al., 2016; Grieco et al., 2016). Recent developments in the

estimation of multi-product production functions usually assume the availability of PMjt (or

a firm-level index of it, e.g., Orr, 2022; Valmari, 2022). In contrast, our method is tailored to

accommodate common situations where input prices vary at the firm level but are unobservable

to researchers. In particular, we maintain the assumption of the literature that PMjt varies

at the firm level (as opposed to the firm-product level) because we model the production as a

transformation function (rather than an individual production plant for each product).13 We

control for PMjt following the insights of Grieco et al. (2016, 2022), Harrigan et al. (2021),

and Li and Zhang (2022), as will be shown in Section 3. Consequently, our empirical method

for estimating multi-product production functions offers broader applicability in commonly

available datasets compared to existing methods.

3 Estimation

The estimation method leverages a set of implications from the model that can be used to

estimate productivity and quality at the firm-product-period level. The method is built upon

the insights of Grieco et al. (2016, 2022), Harrigan et al. (2021) and Li and Zhang (2022),

who utilize the first-order conditions of static profit maximization to control for unobservable

variables in the production function estimation, but it is extended to the multi-product

setting where within-firm allocation of inputs is unobserved. Specifically, while researchers

do not observe key variables such as productivity and quality, the firm observes them before

making optimal production decisions. Thus, the idea is to invert the implications from

the profit maximization problem to establish a unique one-to-one mapping from observable

production decisions to variables that are unobservable to researchers and control for them

in the estimation of the transformation function. Crucially, our model always admits such a

mapping regardless of the number of products.

Compared with the existing methods in the literature, our method has several important

innovations and advantages, as summarized by Table 1. First, our method models the

production technology flexibly as a transformation function and not as a collection of single-

product production functions (De Loecker et al., 2016; Orr, 2022; Valmari, 2022; Chen and

Liao, 2022). This saves us from potentially restrictive assumptions regarding how firms

13This assumption holds if the input can be costlessly transferred across product lines within the firm, as
assumed by Orr (2022) and Valmari (2022).
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allocate inputs to produce different products. This is especially important in the presence of

shared inputs that serve as public goods within firms. In this regard, Dhyne et al. (2022)’s

model is the most similar to ours. Second, our model offers the advantage of scalability as it

does not require proxies for product-level productivity and rather relies on static optimization

conditions that naturally increase with the number of products. This advantage allows for

the analysis of industries with a large number of products without relying on assumptions to

aggregate products. Third, our method does not rely on productivity evolution processes.

This enables researchers to explore the productivity evolution after the estimation, contrary

to the existing methods which rely on productivity evolution for the estimation. More broadly,

this advantage is useful in applications to explore complex (e.g., interdependent) productivity

dynamics or when product turnover is frequent and endogenously depends on latent variables

(e.g., in the context of exported products). Fourth, our method is designed to deal with the

bias caused by unobserved material prices, like De Loecker et al. (2016), but we employ the

variation of labor and material expenditure ratio (conditional on the wage rate) to identify

material prices. This is particularly useful when material prices are heterogeneous across

firms and over time but are unobservable to researchers. Fifth, we assume a demand system,

as in Orr (2022), Valmari (2022), and Chen and Liao (2022), but our estimation of demand

functions leverages the within-firm revenue relationship implied by profit maximization to

estimate demand elasticities with commonly available firm-level IVs. This alleviates the need

for firm-product level IVs in the demand estimation that are rarely available.

Table 1: Comparison to existing estimation methods

Production Firm-product Proxy Evolution Material price Demand
system productivity free free unobservable system

DGKP Product
Orr Product
Valmari Product
CL Product
DPSW Transformation
Us Transformation

Notes: [1] DGKP refers to De Loecker et al. (2016), Orr refers to Orr (2022), Valmari refers to Val-

mari (2022), CL refers to Chen and Liao (2022), and DPSW refers to Dhyne et al. (2022). [2] In

terms of the assumed demand system, our implementation adopts a CES demand function while in On-

line Appendix A we adopt a general demand function. In comparison, Valmari (2022) and Chen and

Liao (2022) also assume a CES demand function while Orr (2022) uses a more flexible Logit model.

This section is organized as follows. In Section 3.1, we first describe how the static profit

maximization conditions lead to one-to-one mapping between the observed data and variables
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that are unobservable to researchers. In Section 3.2, we derive the estimating equations using

the mapping established in Section 3.1 and describe our estimation strategy in detail.

3.1 From Observables to Unobservables: a One-to-one Mapping

We start the description of the estimation strategy by clarifying the observable and unobserved

variables in the estimation procedure. We observe capital stock Kjt, labor input Ljt, labor

expenditure ELjt, material expenditure EMjt, and quantity Qjnt and price Pjnt of each product

n ∈ Λjt. We do not observe PMjt (or Mjt), and ξ̃jnt and ω̃jnt for n ∈ Λjt. Our goal is to

estimate these unobserved variables together with the production and demand function

parameters. Next, we describe the mapping between observed data and unobservables on the

basis of the firm’s profit maximization.

Note that the firm observes the state sjt (in particular, ω̃jnt and ξ̃jnt for all n ∈ Λjt, PLjt

and PMjt) as described in Section 2.4 and optimally chooses quantities of inputs and outputs

subject to the demand and production functions. The Lagrange function implied by the

static profit maximization problem (8) is:

Ljt =
∑
n∈Λjt

(Qjnt)
1− 1

ηn e
ξ̃jnt
ηn − PLjtLjt − PMjtMjt

−λjt

{∑
n∈Λjt

e−ω̃jntQjnt

− F (Ljt,Mjt, Kjt)

}
. (9)

The first-order conditions with respect to labor and material inputs are, respectively:

∂Ljt

∂Ljt

= −PLjt + λjt
∂F (Ljt,Mjt, Kjt)

∂Ljt

= 0, (10)

∂Ljt

∂Mjt

= −PMjt + λjt
∂F (Ljt,Mjt, Kjt)

∂Mjt

= 0. (11)

The first-order condition with respect to each product quantity Qjnt, n ∈ Λjt, is:

∂L

∂Qjnt

=
ηn − 1

ηn
Pjnt − λjte

−ω̃jnt = 0, (12)

where we have used Pjnt = (Qjnt)
− 1

ηn e
ξ̃jnt
ηn according to the demand function (2). The

implication of (12), Pjnt =
ηn

ηn−1
λjte

−ω̃jnt , is intuitive: the price is the product of the markup

( ηn
ηn−1

) and the marginal cost (λjte
−ω̃jnt). Within a firm, the marginal cost of a given product

differs only due to productivity ω̃jnt, although the marginal cost also varies across firms due
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to λjt.This is a direct result of the costless input transferability assumption of the production

transformation function and profit maximization. Therefore, conditional on a firm, the

variation in product prices identifies the productivity difference across products within the

firm (after accounting for the markup).

From the perspective of researchers, we do not observe ξ̃jnt, ω̃jnt and PMjt. Nonetheless,

we observe the optimal choices which are made based on them by the firm. Thus, utilizing

the optimization conditions allows us to recover the unobserved state variables as functions

of the observable variables. Specifically, our strategy is to recover ξ̃jnt, ω̃jnt and PMjt as

functions of parameters and observable variables including capital stock Kjt, labor input

Ljt, labor expenditure ELjt, material expenditure EMjt, quantity Qjnt and price Pjnt of each

product n ∈ Λjt.

First, we write ξ̃jnt as a function of observed price and quantity according to the demand

function (2):

ξ̃jnt = lnQjnt + ηn lnPjnt. (13)

Once ηn is estimated, we can recover ξ̃jnt as above.

Second, we write PMjt as a function of observable variables. Taking the ratio of equations

(10) and (11) and utilizing the expenditure identities (i.e., ELjt = LjtPLjt and EMjt =

MjtPMjt), we have:

Mjt =

[
αLEMjt

αMELjt

] 1
γ

Ljt. (14)

This implies that material quantity can be recovered from observable variables up to un-

known parameters (αL, αM , γ). Thus, PMjt is naturally derived by substituting (14) in the

expenditure identity (i.e., EMjt =MjtPMjt):

PMjt =

[
αM

αL

] 1
γ
[
EMjt

ELjt

]1− 1
γ

PLjt. (15)

In the same spirit of Grieco et al. (2016), the identification of PMjt comes from the variation

of labor and material expenditure ratio (conditional on wage rate), which is implied by the

optimality condition under non-Hicks neutrality of the material price in the transformation

function.

The third step is to recover ω̃jnt for n ∈ Λjt. Specifically, by substituting (14) into (10),

we can solve for λjt as:

λjt =
ELjt

ραLL
γ
jt

[
αLL

γ
jt

(
1 +

EMjt

ELjt

)
+ αKK

γ
jt

]1− ρ
γ

. (16)
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Then, we substitute (16) into (12) to get:

eω̃jnt =
ηn

(ηn − 1)Pjnt

ELjt

ραLL
γ
jt

[
αLL

γ
jt

(
1 +

EMjt

ELjt

)
+ αKK

γ
jt

]1− ρ
γ

︸ ︷︷ ︸
λjt

. (17)

Noticeably, there are two major components in (17) that identify firm-product-period

specific productivity, ω̃jnt. The first is a firm-level component, λjt as in (16). This component

is the analog of single-product-firm productivity modelled by Grieco et al. (2016) (see their

equation (7)). This (unobserved) productivity component is identified from the (unobserved)

material price because productivity is Hicks-neutral while the material price is not in our

framework.14 That is, a change in the material price causes a change in the (observable)

labor-material expenditure ratio, but a productivity change does not. The second major

component, which varies by firm and by product, consists of Pjnt and ηn. Intuitively, the

variation in product prices helps identify the differences in productivity across products

within the same firm, conditional on the elasticity of demand. That is, firms with higher

(quantity-based) productivity pass the cost-saving to the product prices (as in Foster et al.,

2008). Consequently, the product with a lower price has higher productivity compared with

another product manufactured by the same firm, after controlling for the markup (implied

by the elasticity of demand). In sum, our identification of ω̃jnt uses the variations both at

the firm level and at the firm-product level.

Remark: The proxy-based methodology, originated from Olley and Pakes (1996) along

with a long list of methodological papers, uses observable variables (such as capital invest-

ment and material input) to control for productivity when estimating production functions.

Extending the proxy-based approach to the multiple-product context requires valid prox-

ies, which have to admit a one-to-one mapping between the proxies and firm-product level

productivity. This is a challenging assumption in the context of a large number of products

due to the high dimension of the problem. More importantly, the number of proxies has to

increase with the number of products (as recogenized by Dhyne et al., 2022), making the

extension even more challenging without additional assumptions. The recent development in

methods (i.e., Chen and Liao, 2022; Orr, 2022; Valmari, 2022) circumvents this challenge by

using production functions of individual products as proxy functions directly, after imputing

intra-firm input allocation from firm optimization conditions. This approach assumes that

there is no transitory error in production (which is explicitly modelled and dealt with by Olley

14If both productivity and the material price are Hicks-neutral in the production function, as in Cobb-
Douglas production functions, then this identification strategy fails. However, in this case, the labor-material
expenditure ratio would be a constant under the optimality condition, which is not supported by the data.
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and Pakes, 1996) and that the persistent error (as in the traditional notion of productivity)

evolves independently according to a Markov process.

In contrast, our methodology uses first-order conditions to construct an explicit one-to-

one mapping for productivity (up to the parameters to be estimated). This does not only

guarantee the existence and uniqueness of the mapping from observable data to unobservable

heterogeneity, but also lends us a significant advantage in dealing with scenarios where firms

produce a large number of products, because the number of first-order conditions naturally in-

creases with the number of products. In addition, this methodology of recovering unobservable

heterogeneity (instead of imputing input allocation) saves us from estimating productivity

evolution processes as a part of the production estimation, which can dramatically complicate

the existing methods in the literature, especially when there are endogenous, frequent entry

and exit of products or the evolution processes of productivity are interdependent. More

broadly, this feature allows our method to be widely applied to analyzing the impact of

policy shocks on productivity, which would have to be otherwise considered as a part of

the evolution processes (as emphasized by Chen et al., 2021) and further complicate the

estimation process using the existing methods.

3.2 Estimating Equations and Strategy

In the previous subsection, we have explicitly constructed a one-to-one mapping from

observable variables to the unobserved ξ̃jnt, ω̃jnt, and PMjt (or Mjt equivalently) up to a

set of parameters to be estimated. This mapping is the key to developing the estimating

equations, which we derive in this subsection. Next, we describe in detail the strategy to

estimate the key parameters of the model.

We assume that there is a firm-level measurement error (or unexpected shock) in revenue:

Rjnt = PjntQjnte
ujt , where ujt is a mean-zero independent and identically distributed shock.15

15An alternative way to view this unexpected shock ujt is to consider it as a transitory shock (in
addition to productivity) to the transformation function (3) in the estimation:

∑
n∈Λjt

e−ω̃jntQjnt =[
αLL

γ
jt + αMM

γ
jt + αKK

γ
jt

] ρ
γ eujt . The distinction between ujt and productivity (ω̃jt) is that the firm

observes productivity when making decisions, causing it to be correlated with input choices, whereas ujt is
not observed by the firm (only ex post) and is thus uncorrelated with input choices. Importantly, because
ujt is only observed ex post, it does not affect the production decisions (i.e., the first-order conditions) and
only becomes an additive error in the estimating equation (18). A full derivation with such an ex post error
term in the revenue is described in Online Appendix A. Nonetheless, such a shock, realized ex post, will
be reflected a part of observed Pjt or Qjt and enter the estimated quality (13) or productivity (17) in an
additive way. Consequently, we include a firm-time specific dummy as a control variable in studying the
relationship between quality and productivity in Section 6.
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We use this definition and substitute (14) and (17) into (3) to obtain the estimating equation:16

ln

∑
n∈Λjt

(ηn − 1)ρ

ηn
Rjnt

 = ln

[
EMjt

+ ELjt

(
1 +

αK

αL

(
Kjt

Ljt

)γ)]
+ ujt. (18)

This equation is the multi-product version of the estimating equation proposed by Grieco et al.

(2016) (see their equation 8), who assume that each firm produces a single product.17 In the

context of multi-product firms, the individual product revenues are adjusted by the reciprocal

of their corresponding markups..18 This equation is extendable to a general demand system

which explicitly allows for complementarity or substitutability across products, as shown in

Online Appendix A. Although ujt does not affect production decisions, it does appear as a

part of observed product revenues. A higher shock implies a higher realized revenue Rjnt.

Thus, ujt and Rjnt are correlated. This also implies that we need to estimate the model via

the generalized method of moments (GMM).

Nonetheless, estimating all the parameters using (18) alone faces two challenges. First, ρ

is not separately identified from demand elasticities in (18). In fact, only a combination of ηn

and ρ (i.e., (ηn−1)ρ
ηn

) is identified by (18).19 Second, (18) requires (at least) the same number of

instrumental variables as the number of products to identify (ηn−1)ρ
ηn

of each product, because

all product revenues are correlated with ujt.

To address the two challenges at the same time, we explore the relationship between the

revenues of any two products implied by the firm’s static maximization problem, taking

into account that the markets for different products are segmented. Notably, ηn influences

the sales of individual products, while ρ represents the returns to scale of the production

transformation function and affects the overall sales of all products. Thus, the firm’s optimal

decision on trading off the sales of different products within the firm helps identify ηn from ρ.

In other words, the variation in the sales of a product relative to another product contains

information on how the elasticities of the two products differ. This addresses the first

challenge. Meanwhile, the identified relationship between elasticities reduces the number

16The detailed algebra for a more general model is demonstrated in Online Appendix A. Also, as shown in
Online Appendix A, in the more general function form (4) where output demonstrates complementarity, (18)
stays the same.

17More broadly, (18), without logarithms, is also similar to the estimating equations used by Das et al.
(2007), Aw et al. (2011), and Li (2018) with data on the firm’s total variable cost to estimate demand
elasticities in multiple markets.

18If the elasticities (markups) are the same, then the estimating equation is the same as in Grieco et al.
(2016). We also allow for the returns to scale parameter, ρ, to be estimated, while Grieco et al. (2016) assume
it to be one.

19The identification of (ηn−1)ρ
ηn

relies on the normalization condition that the mean of unexpected revenue

shock is zero: E(ujt) = 0. If E(ujt) ̸= 0, then one cannot identify whether a higher revenue is from a larger
return to scale or a higher unexpected shock.
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of parameters to be estimated in (18). Consequently, the number of instrumental variables

required to estimate the rest of the parameters does not increase with the number of products.

This addresses the second challenge.

To implement this idea, we define a reference product. In principle, the reference product

can be any product. However, the reference product may not be produced by all firms. Thus,

from an empirical point of view, we use the product that is manufactured by most firms

in the industry, to maximize the number of observations one could use in the estimation.20

Without loss of generality, we denote the reference product as product 1. For any firm j,

taking the ratio of (12) of the reference product and that of another product n and using

Rjnt = PjntQjnt, we obtain:21

ln(Rjt1) = cn +
η1 − 1

ηn − 1
ln(Rjnt) + µjnt, n = 2, . . . , N, (19)

where

cn = (1− η1) ln

[
η1

η1 − 1

ηn − 1

ηn

]
and

µjnt = (η1 − 1)

(ω̃jt1 +
1

η1 − 1
ξ̃jt1)− (ω̃jnt +

1

ηn − 1
ξ̃jnt)︸ ︷︷ ︸

difference in quality-adjusted productivity

+
η1 − ηn

(η1 − 1)(ηn − 1)
ujt︸ ︷︷ ︸

measurement error component

 .
The latter, µjnt, contains the difference of the capability (or quality-adjusted productivity,

ω̃ + 1
η−1

ξ̃, as will be formally defined in Section 5) of producing a product relative to that of

the reference product and composition of the unexpected shock. This equation predicts that

the (logarithmic) revenues of two products are linearly related conditional on the difference of

production capability. In particular, firm-level inputs are not a part of the equation explicitly.

This equation is similar to the estimating equation developed by Grieco et al. (2022), who

explore the relationship of revenues of two markets (domestic sales and exports).22

20Across the three industries in our empirical exercise, the percentage of firm-year pairs that produce the
reference product ranges from 62% in footwear to 72% in printing and 88% in pharmaceutical.

21In the more general function form (4) where output demonstrates complementarity, this equation (19)

becomes ln(Rjt1) = cn+
1−θ ηn

ηn−1

1−θ
η1

η1−1

ln(Rjnt)+µjnt, n = 2, . . . , N , where cn = 1
1−θ

η1
η1−1

ln
[

η1

η1−1
ηn−1
ηn

]
. However,

it can be shown that the additional parameter θ cannot be separately identified from ρ using this equation
and (18). In Online Appendix A, we extend our model to identify θ using additional restrictions, which
requires estimating the demand system (and thus demand elasticities) directly using appropriate instrumental
variables. Overall, the advantage of imposing θ = 1 is to allow us to estimate demand elasticities jointly from
(18) and (19) without estimating the demand function directly.

22One difference is that Grieco et al. (2022) model the error term as an unexpected shock because the
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Intuitively, because the demand for each product is segmented in our setting, as discussed

in Sections 2.1 and 4, the relative revenue of one product over another product in the

same firm depends on their own demand elasticities (conditional on their relative levels of

productivity and quality, measured as µjnt) rather than on complementarity or substitution

between them. As a result, the variation of one revenue relative to another in (19) provides

the identification of the ratio, η1−1
ηn−1

for n = 2, 3, . . . , N . In contrast, the variation of revenue

levels in (18) identifies (ηn−1)ρ
ηn

, n = 1, 2, . . . , N . That is, the returns to scale parameter affects

the sales of all products but not the relative relationship of sales between different products,

while demand elasticities affect both the level and the relative relationship of sales of different

products. As a result, ρ and ηn, n = 1, 2, . . . , N , are separately identified as long as there

are at least two products with different demand elasticities in the industry. The model is

over-identified when there are more than two products produced by the firms in the industry.

More precisely, the elasticities and returns to scale parameter can be identified as long as

there is a firm that manufactures two products with different demand elasticities for a number

of periods, which is a very mild assumption.

To estimate (19), we treat µjnt as an error term. We allow the mean of µjnt to vary by

product and year and use a set of flexible product-year dummies as controls (which also

absorb cn). µjnt is likely correlated with Rjnt – the revenue of product n is lower if the

capability of producing n is lower than that of the reference product. We use a set of IVs

to address the endogeneity issue. In our implementation, the IV set consists of a constant

and the logarithm of the wage rate (PLjt), the capital stock (Kjt), and the ratio of material

expenditure to labor (EMjt/Ljt, as a proxy for material prices after conditional on wage

rate).23 Grieco et al. (2022) uses a similar set of firm-level IVs to estimate an equation

analogous to (19) in a two-product scenario. The same insight carries over in our context.

These firm-level variables influence the level of revenue (i.e., Rjnt), but they are uncorrelated

with the difference of capability (i.e., µjnt) between two products. For example, conditional

on everything else, a higher level of capital stock potentially leads to higher revenues of

a given product, but it is not necessarily associated with the production capability of one

product being larger than that of another product within the same firm. Thus, we use these

firm-level variables as IVs for all product pairs in (19).24

productivity and quality of the domestic and export products are assumed to be the same and thus cancel
out.

23To see this, note that (15) is equivalent to PMjt =
[
αM

αL

] 1
γ
[
EMjt

Ljt

]1− 1
γ

P
1
γ

Ljt. Taking logarithm, we obtain

ln(PMjt) =
1
γ ln

[
αM

αL

]
+ (1− 1

γ ) ln
[
EMjt

Ljt

]
+ 1

γ ln(PLjt). Because we include the logarithm of the wage rate,

ln(PLjt), in the IV set, using ln
[
EMjt

Ljt

]
is equivalent to using ln(PMjt) in this setting, although PMjt is not

observable. Our result is quantitatively similar if the expenditure ratio of material and labor is used as an IV.
24The model is over-identified if there is more than one IV. For example, if there are 2 IVs, then there are
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The validity of these IVs relies on the condition that the production of a product is not

systematically more intensive in the use of a specific input (e.g., capital) than other products

and that the wage rate and input price are not systematically correlated with the capability

differences between products. We use Monte Carlo exercises to demonstrate the performance

of our approach and IVs under this condition in Online Appendix D. In our structural

framework, given the assumption of transformation function and costless transferability of

inputs across products, this condition is satisfied.25

Remark: In cases where this condition does not hold, alternative solutions are available.

First, the demand elasticities can be, in principle, identified by the demand function (2) using

the variation of prices and quantities. The primary challenge in directly estimating (2) is

the availability of IVs – ideally at the firm-product-time level – that are uncorrelated with

product quality. Commonly used cost shifters are often unsuitable because firms producing

high-quality products typically use higher-cost, high-quality inputs. However, if appropriate

IVs are available for directly estimating the demand function (2), it eliminates the need

to estimate (19), allowing the main equation (18) to be estimated using a Nonlinear Least

Squares estimator, rather than GMM. For example, Orr (2022) estimate a demand system

directly by employing sophisticated IVs that exploit variations in product sets and input

price growth across firms in different output markets that use similar inputs.

Second, if one is willing to assume constant return to scale (i.e., ρ = 1), then the demand

elasticities can be identified using (18) alone, without relying on the strategy involving (19).

In fact, with the constant return to scale assumption, (18) degenerates to the estimating

equations used by Das et al. (2007), Aw et al. (2011), and Li (2018). These papers utilize

the relationship between the total variable cost (as our counterpart of the right-hand side of

(18)) and export revenues (as our counterpart of the left-hand side of (18)) of the same firm

to estimate demand elasticities in multiple export markets.

We denote the estimated relationship between elasticities as b̂n = η1−1
ηn−1

, n = 2, . . . , N , and,

naturally, b̂1 = 1 by definition. Thus, ηn = 1

b̂n
(η1 − 1) + 1. Substitute it as ηn in (18) and

2(N − 1) moment equations that can be formed to identify (N − 1) coefficients (i.e., η1−1
ηn−1 , n = 2, . . . , N).

25To examine this assumption empirically, we check whether the IVs are correlated with either the within-
firm product shares or the ratio of log sales of a product over that of the baseline product as alternative
measures of relative production capability. Specifically, we regress each IV on either the interactions between
product fixed effects and within-firm revenue shares (including firm and year fixed effects) or the interactions
between product fixed effects and the ratio of log sales of a given product over that of the baseline product
(including firm and year fixed effects). We find that at least 85% of coefficients (i.e., products) are not
significant at the 1% level in these tests for our IVs.
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solve for ujt to construct moment conditions for the GMM estimation:

ujt = ln ρ+ ln

∑
n∈Λjt

η1 − 1

η1 − 1 + b̂n
Rjnt

− ln

[
EMjt

+ ELjt

(
1 +

αK

αL

(
Kjt

Ljt

)γ)]
. (20)

There are only four parameters, β ≡ (ρ, η1,
αK

αL
, γ), to be estimated. This means that the

number of instrumental variables required does not increase with the number of products. In

particular, firm-level input choices can serve as valid IVs because they are not correlated with

the unexpected shock ujt. In the implementation, we use Zjt = (1, EMjt, ELjt, Ljt, Kjt/Ljt)

as IVs. Our results are robust to a set of alternative firm-level IVs.

Equation (20) can only identify αK

αL
rather than αL, αM , and αK separately. As shown

by Grieco et al. (2016), the full set of (αL, αM , αK) can be identified with two constraints

naturally implied by the model. The first constraint is a normalization of distribution

parameters in the CES production function: αL + αM + αK = 1. The second constraint

equalizes the ratio of geometric means of labor expenditure (EL) and material expenditure

(EM) to the ratio of distribution parameters in the CES production function. That is,
αM

αL
= EM

EL
. This constraint results from taking the geometric mean of (14), which is implied

by the first-order conditions of labor and material quantities, (10) and (11), of all firms.26

As a result, β can be estimated as:

β̂ = argminβ

[
1

N
∑
j,t

ujtZjt

]′
W

[
1

N
∑
j,t

ujtZjt

]
, (21)

subject to: αL + αM + αK = 1 and
αM

αL

=
EM

EL

,

where W is a weight matrix and N is the number of firm-time observations.

As a summary of the full estimating approach, the first step is to estimate b̂n = η1−1
ηn−1

, n =

2, . . . , N via Two-Stage Least Squares (2SLS) using the relationship imposed by the within-

firm relative sales in (19). The second step is to estimate (ρ̂, η̂1, α̂L, α̂M , α̂K , γ̂) using (20) via

GMM. With these estimates, the demand elasticities can be recovered as η̂n = 1

b̂n
(η̂1 − 1) + 1.

After that, we compute ξ̃jnt, ω̃jnt, and PMjt via (13), (17), and (15), respectively. We

demonstrate that our method is able to recover the true parameter values in the Monte Carlo

26As shown by Grieco et al. (2016), this constraint holds conditional on a normalization of the CES
production function. Thus, we follow the same procedure to normalize the inputs using their corresponding
industry-level geometric means as in the literature (e.g., Klump and de La Grandville, 2000; León-Ledesma
et al., 2010). Nonetheless, to ease our notation, we directly denote the normalized input variables as

(Ljt,Mjt,Kjt). As a result, the ratio of the geometric means of material and labor is M
L

= 1, which implies
αM

αL
= EM

EL
, by taking the geometric mean of (14) across firms.
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exercises shown in Table A7 of Online Appendix D.

4 Data

We estimate our model using firm-level Mexican manufacturing data, collected by the Instituto

Nacional de Estad́ıstica y Geograf́ıa (National Institute of Statistics and Geography, INEGI

henceforth) and covering the period 1994-2007. We use two datasets: the Encuesta Industrial

Anual (Annual Industrial Survey, EIA henceforth), the main annual survey covering the

manufacturing sector, and the Encuesta Industrial Mensual (Monthly Industrial Survey,

EIM henceforth), a monthly survey that monitors short-term trends related to employment

and output.27 These datasets are particularly useful for our analysis because they provide

quantity and sales information at the firm-product level.

Next, we describe in more detail these two surveys and the variables we extract from

them.28 The EIA contains information on 6867 firms in 1994, but this number decreases over

time due to attrition. It covers roughly 85 percent of all manufacturing output value based on

information from the industrial census, but it excludes assembly plants, i.e., “maquiladoras”.

The EIA includes variables related to output indicators, inputs, and investment. These data

make it possible to calculate the value of intermediate inputs and physical capital stock based

on information on investment and the perpetual inventory method. The EIM runs in parallel

with the EIA and covers the same firms. The EIM contains information on the number of

workers and their wage bills so that the average wage at the firm level can be calculated. The

EIM also contains output-related variables, in particular values and quantities of sales at the

product level, so that an implicit average unit price can be calculated.29

Firms are classified by INEGI into one of the classes of activity based on their principal

product. A class of activity is the most disaggregated level of industrial classification and is

defined at six digits according to the 1994 Clasificación Mexicana de Actividades y Productos

(Mexican System of Classification for Activities and Products, CMAP henceforth). Firms

report information product by product based on their industries and a list of products

provided by INEGI.

In this paper, we focus on three specific classes of activities: manufacturing of footwear,

mainly of leather (class 324001, footwear in short); printing and binding (class 342003, printing

in short); and manufacturing of pharmaceutical products (class 352100, pharmaceuticals in

27The unit of observation in both surveys is a plant rather than a firm and the sample includes all plants
with more than 100 employees as well as a sample of smaller plants. For simplicity and in line with the
literature, we will use the term “firm” to refer to a plant.

28More information on the EIA and EIM can be found in Caselli et al. (2017) and Caselli (2018).
29All nominal variables are deflated using the consumer price index. To facilitate comparison, we normalize

average industry output prices to 1. Initial capital stock and investment are deflated using industry-level
price indices.
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short). These three industries were chosen because each industry is made up of more than

500 firm-year pairs, a number of observations large enough for our estimation strategy. More

importantly, multi-product firms are particularly prevalent in these industries – 65% of firms

in these three industries are multi-product producers and such firms account for 86% of total

revenues and produce on average 6.7 products per year.30 They also represent a diverse

set of manufacturing industries with clear concepts/characteristics of product quality: for

example, advanced design and assembly that provide superior comfort and durability in the

footwear industry; acid-free paper and durable binding in the printing industry; potent active

ingredients and degrading-preventing packaging in the pharmaceutical industry.

For the purpose of the production function estimation in Section 5, all products with fewer

than 100 observations are aggregated together in a residual product category.31 The prices

and quantities of the aggregated residual product category are estimated following Diewert

et al. (2009) and Caselli (2018). While this aggregation is required to estimate the demand

elasticity of substitution for each product based on a large enough number of observations,

it only implies that the demand elasticity of substitution is by assumption equal across all

products included in the residual product category within an industry. In addition, this

aggregation involves a relatively small share of products: the main (i.e., not aggregated)

products account for between 74% and 92% of observations and 82% and 90% of revenue

across the three industries. Accordingly, the descriptive statistics and patterns demonstrated

in this section are reported based on the aggregated categories, which is the data used in the

estimation in Section 5.

There are a few patterns worth noticing. First, multi-product production is an essential

feature of the firms in our sample. We demonstrate this point by using an index that is

analogous to the traditional Herfindahl–Hirschman Index (HHI). Specifically, we construct

an analog index of HHI as the sum of the squared shares of sales within a firm. A higher

HHI index means a higher level of concentration of sales within a firm.32 The index is

naturally equal to one for single-product producers. For firms with a larger product scope,

HHI decreases sharply becoming close to 0.3 for firm-year pairs producing 5 products and

close to 0.2 for firm-year pairs producing 10 or more products.33 These values imply that

30Tables A1, A2 and A3 in the Online Appendix show how detailed the product-level information is by
reporting the list of products with at least 100 observations for each of the three chosen industries.

31The residual product category is defined as “Others” (product code 99) in Tables A1, A2 and A3 in the
Online Appendix.

32In Figure A1 in the Online Appendix, we aggregate the firm-level index with weights equal to the firms’
total revenues, by firm-year pairs’ product scope.

33These values indeed show some degree of concentration of sales within firms. For example, if a firm
produces 5 products with equal sales, the index would be 0.2. The fact that the index is close to 0.3 implies
that there exists an uneven distribution of sales. We explore this heterogeneity using quality and productivity
within firms in Section 6.
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producers are genuine multi-product firms – they do not concentrate production entirely on

their top products, and all products, albeit to different degrees, are important for firms’ total

revenues.34 Thus, multi-product firms need to be treated and modelled as such and they

cannot be simplified as single-product producers.

Table 2: Descriptive statistics: prevailing multi-product firms

Variable Footwear Printing Pharmaceutical

Product scope, all firms 1.289 3.708 6.858
(0.627) (3.752) (3.740)

Product scope, MPFs only 2.388 5.891 7.925
(0.602) (3.841) (3.024)

Share of MPFs 0.208 0.554 0.846
Revenue share of MPFs 0.389 0.599 0.940

Total number of products 4 14 16
Total number of firms 72 83 82
Average number of firms per product-year 21 19 43
Number of firm-year pairs 707 831 928

Notes: The table reports the means and standard deviations (in parenthesis) for each variable by industry.

Product scope is the number of products manufactured by firm. MPFs refers to multi-product firms only.

The importance of multiple-product production is also present in all the industries of

our analysis, albeit with some degrees of variation, as shown in Table 2.35 The percentage

of multi-product firms ranges from 21% in the footwear industry to 55% in printing and

85% in pharmaceuticals and they account for an even larger share of revenues (from 39%

in the footwear industry to 94% in pharmaceuticals). The average product scope is larger

in printing and pharmaceuticals (respectively, 5.9 and 7.9 for multi-product firms) than in

the footwear industry (2.4). These differences in average product scope are in line with the

number of product categories available in each industry, which ranges from 4 in footwear to

16 in pharmaceuticals.

Second, the status of being a multi-product firm is quite persistent, and so is the product

scope. In particular, using a simple autoregressive process of the number of products produced

by each firm, we measure the persistence coefficients are 0.87, 0.95, and 0.98 in the three

industries, respectively.36 Thus, multi-product firms unequivocally dominate manufacturing

34To confirm that firms rely heavily on all products for their total sales, Online Appendix Table A4 shows
the average within-firm product shares by product scope. For instance, for firms producing 5 or more products,
the share of products other than the top product is 0.557 and the share of products with rank 5 and beyond
is 0.146, on average.

35Additional descriptive statistics are available in Table A5 in the Online Appendix.
36The entry of new products and the exit of old products only account for 3.8 and 4.4 percent of the

observations, respectively.
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production in our data and their within-firm adjustment across products is more salient than

the extensive margin adjustment in changing the number of products.

These patterns imply that both within-firm and across-firm heterogeneity is important.

On the one hand, there exist persistent characteristics at the firm level that determine the

performance across firms. On the other hand, intra-firm heterogeneity and product scope

play a significant role in shaping these characteristics within firms. These implications are in

line with the specification for productivity (17), which contains a common component at the

firm level to capture the differences across firms as well as an individual component varying

at the firm-product level to explain the variation of performance within a firm.

Finally, the sample reflects patterns consistent with the model’s demand assumption. On

average, about 19 to 43 firms are competing in the market for any given product in any

given year. The majority of the firms do not command a dominant share of the market –

the median (traditionally defined) HHI at the product-year level ranges between 0.11 in the

pharmaceutical industry and 0.26 in the printing industry. More importantly, given the level

of product disaggregation, the markets for different products (e.g., women’s shoes vs. men’s

shoes in the footwear industry) are reasonably assumed as segmented. For each product,

firms’ outputs are vertically differentiated as evidenced by the large dispersion in prices.37

Overall, these patterns support abstracting from demand cannibalization across products

manufactured by the same firm and assuming that firms face monopolistic competition within

each product category.

5 Estimation Results

In this section, we apply the empirical model to the data and estimate the production and

demand function parameters by industry, which then allows us to compute firm-product level

productivity and quality. Notably, our approach employs a novel method, and despite this

novelty, the resulting structural parameter estimates align closely with existing literature.

Moreover, the productivity and quality measures derived from these estimates exhibit eco-

nomically meaningful properties. Because our empirical analysis relies on estimated variables,

we employ bootstrapping with 100 samples to compute all standard errors presented in the

subsequent tables, ensuring robustness and accuracy in our findings.

Table 3 presents the production function parameters. αM is significantly larger than αL

and αK , consistent with the intensive use of intermediate material input across all industries.

αK in the pharmaceutical industry is the highest among the three industries, reflecting the

importance of capital in this industry. Parameter σ, which is the elasticity of substitution

37For example, the interquartile range of prices in logarithm is 1.4 (i.e., a 400% difference) within a product
category, on average, across the three industries.
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across inputs, i.e., labor, material, and capital, is greater than one across all industries. This

is different from those in the classical literature which does not control for heterogeneous

material prices. But it is largely consistent with the estimates in Grieco et al. (2016, 2022),

Harrigan et al. (2021), and Li and Zhang (2022) based on a similar method but using different

datasets from Colombia (ranging from 1.4 to 2.6), France (ranging from 1.1 to 2.0), and

China (ranging from 1.2 to 2.7), respectively. It is also close to the average estimate (around

1.4) of the elasticity of substitution among Chinese industries by Berkowitz et al. (2017) using

a different method. Finally, the returns to scale parameter ρ of the three industries is larger

than one, but it is not significantly different from one, implying that the production is close

to constant returns to scale in these industries, except in the case of the footwear industry.

Table 3: Production function estimates

Parameter Footwear Printing Pharmaceutical

αL 0.202 0.229 0.227
(0.013) (0.017) (0.021)

αM 0.774 0.673 0.595
(0.035) (0.032) (0.063)

αK 0.023 0.099 0.178
(0.044) (0.041) (0.079)

σ 1.518 1.244 1.168
(0.568) (0.171) (0.241)

ρ 1.227 1.078 1.002
(0.107) (0.095) (0.127)

Note: Bootstrapped standard errors clustered at the firm
level and stratified by industry and scope are shown in paren-
theses (100 repetitions).

Table 4 presents the estimates of the demand elasticities of substitution of different

products in the three industries. These estimates generally fall within a similar range as those

found in the existing literature (e.g., see Roberts et al. (2018); Grieco et al. (2016); Dubois

and Lasio (2018)). Our approach is in contrast to the literature, which often relies on direct

estimation of the demand function while assuming time-invariant product quality and/or

using firm-level instrumental variables, such as capital stock. By leveraging the multi-product

context, as described in (19), we capitalize on the advantage of utilizing firm-level IVs that

may be potentially correlated with the level of quality but are less likely to be correlated

with the difference in production capabilities of any two products within the firm.38

38When we estimate the demand function (2) directly using the same firm-level IVs, the estimated demand
elasticities are significantly biased towards zero: the mean elasticities are -0.005, 1.941, and -0.395 for the
footwear, printing, and pharmaceutical industries, respectively.
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Table 4: Demand function estimates

Parameter Footwear Printing Pharmaceutical

η1 2.823 4.523 3.688
(0.539) (1.583) (1.275)

η2 2.455 8.661 3.037
(0.540) (2.683) (1.616)

η3 3.588 4.432 4.209
(0.699) (1.451) (2.145)

η4 3.250 7.321 3.999
(0.713) (2.204) (2.000)

η5 4.448 4.010
(1.596) (2.057)

η6 4.769 2.712
(1.913) (0.904)

η7 5.140 3.544
(1.704) (1.620)

η8 6.157 3.210
(2.325) (1.352)

η9 7.139 3.133
(2.202) (1.761)

η10 4.838 3.263
(1.490) (1.408)

η11 6.682 3.418
(1.845) (1.934)

η12 5.588 3.047
(1.669) (1.027)

η13 4.279 4.713
(2.009) (2.058)

η14 5.379 7.279
(1.416) (2.462)

η15 2.431
(1.937)

η16 2.809
(1.654)

Note: Bootstrapped standard errors clustered at the firm
level and stratified by industry and scope are shown in paren-
theses (100 repetitions).

The variations in demand elasticities across products, as documented above, lead to

differences in markups at the firm-year level. These markups can be calculated as the

weighted average of product markups considering their respective shares within firms.39

39Across the three industries, the average markup at the firm-year level is 1.40 with a standard deviation
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Estimated dispersion in markups is smaller than the estimate reported by De Loecker and

Warzynski (2012). This is because our variation of firm-year-level markups only captures

the heterogeneous revenue shares and sets of products (as well as their associated markups)

manufactured by different firms. Despite this narrower focus, the dispersion of markups at

the firm-year level remains significant.

After all model parameters are estimated, we compute the firm-product-time varying

output quality and productivity according to (13) and (17) in logarithm, respectively.40

Nonetheless, these two measures are not directly comparable across and within firms. This is

because the varieties (in the same product category) are of different quality levels and the

unit of measurement across different products can be also different (e.g., grams vs. liters).

However, the quality-adjusted output is readily comparable across firms and products, as

shown by Melitz (2000), Orr (2022), and Li et al. (2023). Thus, we follow the literature to

construct a combined measure that takes both quality and productivity into account. In

our context, given the setup of quality-adjusted output in (1), we define a quality-adjusted

productivity (ATFP) measure as41

ATFPnjt = ω̃njt +
1

ηn − 1
ξ̃njt. (22)

As expected, ATFP reflects significant dispersion across firms even within a specific

product category.42 The mean interquartile range within a product is about 2.8 (calculated

across all products in the three industries), which is similar in magnitude to that of revenue

productivity documented by Grieco et al. (2022) in the Chinese paint industry. Regarding

the components of ATFP, the interquartile range of ω̃jnt within a product has a mean of 2.8,

while the interquartile range of 1
ηn−1

ξ̃njt within a product has a mean of 1.8.43

Overall, our estimation results reflect reasonable parameter estimates and productivity

and quality measures at the firm-product level. In the following sections, we turn to use these

measures to explore the role of productivity and quality in shaping intra-firm performance

heterogeneity.

of 0.14. The interquartile range (using the logarithm of the markups) is 0.16.
40We also compute firm-level intermediate input prices according to (15). We find that there is significant

heterogeneity in intermediate prices, as documented by Ornaghi (2006) using observed intermediate price
data.

41This measure is similar to the conventionally defined revenue-based productivity (a.k.a., TFPR).
42The distributions of ATFP by product, as well as the distributions of its components, ω̃njt and ξ̃njt, are

reported in Figures A2, A3 and A4, respectively.
43The interquartile range of ω̃jnt is slightly larger than that of ATFP because the two components of ATFP,

productivity, and quality, are negatively related, as will be clear in Section 6.
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6 Intra-firm Heterogeneity: Productivity and Quality

With the structural parameters reasonably estimated and the rich distributions of productivity

and quality revealing significant heterogeneity even within narrowly defined product lines, we

now turn to the pivotal question: what new insights about multi-product firms emerge from

our analysis? We focus on how firm-product-level heterogeneity in productivity and quality

influences the relative performance of different products within a firm and, importantly, the

relationship between these attributes.

The literature traditionally emphasizes the role of productivity in explaining the growth

and performance of firms and industries (e.g., Jovanovic, 1982; Hopenhayn, 1992; Ericson and

Pakes, 1995; Melitz, 2003). Recently, a growing literature shows that demand is also important

for firm turnover and growth (e.g., Foster et al., 2008; Pozzi and Schivardi, 2016; Kumar and

Zhang, 2019). However, this strand of the literature usually focuses on across-firm analysis

using firm-level data. Taking into account the joint nature of production in multi-product

firms, our estimation method allows us to uncover rich, flexible dimensions of heterogeneity

within firms and explore the role of productivity and demand at the firm-product level.

Specifically, we estimate the following regression equation to explore the relationship

between the within-firm product rank of sales and firm-product-level productivity and

quality:44

Log product rankjnt = αω̃ω̃jnt + αξ̃ ξ̃jnt + djn + djt + dnt + ϵjnt, (23)

where the product rank (in logarithm) is defined based on the sales of products within

firm-year pairs.45 The rank of the top product (i.e., with the largest sales) is 1. An increase

in rank indicates a product further away from the core competency of a firm. We include

djn, djt, and dnt as firm-product, firm-year, and product-year fixed effects, respectively, to

capture different characteristics other than productivity and quality that vary at these levels

and influence the product rank.

We find that products closer to firms’ core competence (i.e., with a lower rank value)

have both higher productivity and quality. An increase of 1 percent in productivity and

quality moves the rank of the product up by 0.602 percent and 0.170 percent, respectively,

44In an unreported result, a similar regression equation is estimated using the growth of sales (instead of
the level of sales) within a firm to measure the product rank. The regression result shows a similar pattern.

45Equation (23) examines the relationship between product rank on the one hand and productivity and
quality on the other by using product rank as the dependent variable. The purpose of the regression is to
study directly the importance of productivity and quality for differences in sales across products within firms.
In fact, regression equation (23) is predicted by the implication of our model. To see this, summing (12) over
products produced by the firm and using (3), we obtain: ln sjnt = (ηn − 1)ω̃jnt + ξ̃jnt + (ηn − 1) ln(ηn−1

ηn
) +

1
ηn−1 ln

(
F (Ljt,Mjt,Kjt)

(
∑

n∈Λjt

(ηn−1)
ηn

Rjnt)(
∑

n∈Λjt
Rjnt)ηn−1

)
, where sjnt is the within-firm share of product n in period t.
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conditional on all other factors. This is consistent with the literature that has theoretically

postulated cost (i.e., productivity) or demand (i.e., quality) as key determinants of such

within-firm variation in sales (e.g., Berman et al., 2012; Chatterjee et al., 2013; Mayer et al.,

2014, 2021; Eckel et al., 2015; Arkolakis et al., 2021). Our results provide empirical support

for both of these hypotheses.

Figure 1: The relationship between productivity and quality
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As both productivity and quality influence the intra-firm performance of a product, it

is natural to ask whether and how these different dimensions of within-firm heterogeneity

are related. As a starting point, Figure 1 presents the raw relationship between our two key

estimated measures of heterogeneity, i.e., (quantity-based) productivity (ω̃jnt) and quality

(ξ̃jnt).
46 This raw correlation is negative, consistent with the emerging literature (e.g., Grieco

and McDevitt, 2017; Orr, 2022; Li et al., 2023) highlighting the trade-off between these two

dimensions of firm heterogeneity. This empirical pattern suggests that producing higher-

quality products increases the marginal cost of production by decreasing output quantity per

unit of inputs, which in turn reduces (quantity-based) productivity. This is a relationship

between productivity and quality that we allow for in (6) of the model but do not impose in

our structural estimation.

To formally quantify the trade-off between the two dimensions within firms, we propose

46When we tease out the fixed effects at firm-product, firm-year, and product-year levels from ξ̃jnt to obtain
a finer measure of quality (i.e., ξjnt) as defined in Section 2, the correlation is also negative. The firm-product
fixed effects may contain parts of quality that only vary at the firm-product level. The correlation is robustly
negative when we include the firm-product fixed effects as a part of the quality measure.
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to estimate a linear version of (6):47

ω̃jnt = ωjnt − γξ ξ̃jnt, (24)

where γξ ξ̃jnt is interpreted as the cost (in terms of lowering productivity or raising marginal

cost) of increasing quality, holding inputs fixed. γξ measures the elasticity of productivity

with respect to the change in quality. We refer to it as the cost responsiveness of quality.

Nonetheless, estimating the cost responsiveness of quality (γξ) is challenging. Technical

efficiency (ωjnt) is correlated with the quality choice (ξjnt) if firms choose to produce different

quality products based on technical efficiency. To address this challenge, we exploit a simplified

version of the evolution of ωjnt following equation (7):

ωjnt = g1ωjnt−1 + djt + dnt + ϵjnt, (25)

where dnt and djt are product-year and firm-year fixed effects, and ϵjnt is an i.i.d. innovation

shock.

Replacing technical efficiency in (25) by that in (24) gives:

ω̃jnt = g1ω̃jnt−1 − γξ ξ̃jnt + g1γξ ξ̃jnt−1 + djt + dnt + ϵjnt. (26)

Although all variables (except ϵjnt) are already estimated from our structural model, the

innovation shock ϵjnt can be correlated with contemporaneous quality choice ξ̃jnt. To address

such an endogeneity problem, we estimate (26) via GMM using a set of instrumental variables

that includes the average productivity and average quality of products that are produced by

other firms in period t− 2. These variables are uncorrelated with the innovation term ϵjnt

which is an i.i.d. shock.

The estimation results are presented in Table 5. As expected, technical efficiency is

highly persistent. More importantly, we find a negative trade-off between productivity and

quality at the firm-product level across various specifications of (26). Column (1) reports the

estimated coefficients of (26) including only product-year fixed effects, while the estimation in

Column (2) also includes firm-year fixed effects. The comparison of the coefficient estimates

in Columns (1) and (2) suggests that it is important to control for unobserved firm-year

47Our estimated measure of quality, ξ̃jnt, is derived as the residual from the demand function (2). Conse-
quently, its variation across products, firms, and over time may be influenced by factors such as demand
conditions (e.g., macroeconomic conditions and market size), firm-brand image, product measurement units
(e.g., grams vs. liters), and firm-time-specific measurement errors, as discussed in Section 2.1. To isolate the
actual impact of quality (ξjnt) from these potential confounders and control for unobserved product and firm
characteristics, we include product-year and firm-year fixed effects in the analysis.
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fixed effects to minimize the potential selection bias despite the use of valid instrumental

variables. According to Column (2), a 1-percent increase in quality lowers productivity (and

thus increases marginal cost) by 0.234 percent, holding all other variables fixed. Such an

estimate of cost responsiveness of quality is consistent with other analyses using different

approaches in various industries and countries.48 Importantly, this also suggests that it is

necessary to control for quality differences as a part of the evolution in the existing estimation

methods (e.g., Orr, 2022; Valmari, 2022) that utilize the evolution process of productivity in

the estimation of production parameters.

To explore a potential source of the cost of quality, we allow the cost responsiveness to

vary by product age. Here, product age is defined for each product-firm pair as the number

of years since the product variety first appeared in the sample. Specifically, we extend

(24) by introducing an interaction term between quality and the logarithm of product age,

alongside the logarithm of product age itself.49 The result is presented in Column (3) of

Table 5. The negative coefficient for γaξ indicates that the trade-off between productivity

and quality diminishes as a firm continues to produce a specific product over time. This

suggests that firms with extensive experience in manufacturing a particular product develop

better production management capabilities, allowing them to achieve higher quality without

sacrificing efficiency. Based on the estimate in Column (3), a straightforward calculation

shows that five years of experience in product manufacturing results in approximately a 6.7

percentage point reduction in the impact of quality on productivity, translating to a 26.2

percent decrease in the overall effect of quality on productivity.50

Finally, while we adopt a simple evolution model for technical efficiency – commonly

represented in the literature as an AR(1) process (25) – our estimation approach offers a unique

48For example, Jaumandreu and Yin (2014) find strong negative correlations (ranging from -0.99 to -0.59,
by industry) between their measures of cost advantage and demand advantage of exporters in the Chinese
manufacturing industries. Grieco and McDevitt (2017) show that reducing a healthcare center’s quality
standards can increase its patient load, and they document a quality-quantity (number of patients) trade-off
elasticity of -0.2 in the dialysis industry in the United States. Atkin et al. (2019) find that firms that make
lower quality rugs produce more quickly among rug-makers in Egypt, demonstrating a reverse correlation
between quantity productivity and quality productivity with an elasticity of -0.40. Orr (2022) estimates
firm-product level measures of productivity and “product appeal” from the Indian machinery manufacturing
industry and finds a negative correlation of about -0.28 between them. Using an objective output quality
measure, Li et al. (2023) find that about half of the benefit created by quality is offset by the cost of producing
the quality in the Chinese steel-making industry. Forlani et al. (2023) document an even stronger negative
correlation (about -0.9) between demand and quantity-based productivity at the firm level in various Belgian
industries, suggesting a trade-off between the quality of a firm’s products and their production cost.

49That is, (24) becomes: ω̃jnt = ωjnt − (γξ + γaξagejnt)ξ̃jnt + γaagejnt, where agejnt is the logarithm of

product age. Consequently, the estimating equation (26) becomes ω̃jnt = g1ω̃jnt−1 − γξ ξ̃jnt + g1γξ ξ̃jnt−1 +

γaagejnt − g1γaagejnt−1 − γaξ ξ̃jntagejnt + g1γaξ ξ̃jnt−1agejnt−1 + djt + dnt + ϵjnt.
50The calculation of the level of the impact is: 0.086× (log(5 + 1)− log(1)) = 0.067. Relative to the overall

impact of quality on productivity, the calculation is: 0.086×(log(5+1)−log(1))
0.255 = 0.262.
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Table 5: Cost of quality

Dep. var.: Productivity (1) (2) (3) (4)

g1 0.867*** 0.980*** 0.888*** 0.818***
(0.028) (0.045) (0.042) (0.064)

γξ 0.160*** 0.234*** 0.255*** 0.151***
(0.057) (0.074) (0.087) (0.056)

γa -2.584
(1.903)

γaξ -0.086***
(0.032)

gs 0.049
(0.073)

Product-Year FE yes yes yes yes
Firm-Year FE no yes yes no

Observations 7122 7122 7122 7122

Note: The dependent variable is quantity-based productivity at the firm-product-year level.
The coefficients are estimated via GMM. The instrument set includes lagged productivity,
lagged quality, twice-lagged quality, twice-lagged average productivity of the same product
produced by other firms and twice-lagged average quality of the same product produced by
other firms in all specifications. The instrument set in Column (3) also includes log product
age, lagged log product age, the interaction between lagged quality and lagged log product
age and the interaction between twice-lagged quality and twice-lagged log product age. The
instrument set in Column (4) also includes lagged productivity and lagged quality of the top
ranked product of each firm-year pair. Bootstrapped standard errors clustered at the firm
level and stratified by industry and scope are shown in parentheses (100 repetitions). ***
p < 0.01, ** p < 0.05.

advantage over existing methods. Specifically, it allows for the straightforward exploration of

more complex (e.g., interdependent) structures in the evolution of firm-product-level technical

efficiency. This advantage stems from our approach to estimating production parameters

and productivity, which does not rely on the time-series relationship of productivity in the

estimation process unlike some of the existing methods (e.g., Orr, 2022; Valmari, 2022).

Consequently, this allows us to examine the time-series dynamics of productivity after the

estimation. As a demonstration of such an advantage, we investigate potential spillovers of

technical efficiency from a firm’s top-ranked product to its other products. That is, we extend

(25) by adding a term, gsω
∗
jt−1, to the right-hand side. Here, ω∗

jt−1 represents the technical

efficiency of the top-ranked product within firm j in period t − 1, and the coefficient gs

measures the strength of the spillover effect on the technical efficiency of product n within the
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same firm.51 We estimate this specification report the result in Column (4) of Table 5. We find

positive (although not statistically significant) spillover effects from the top-ranked product

within a firm. Importantly, the cost-responsiveness coefficient, γξ, remains qualitatively

similar to the other specifications.

Overall, the results obtained above demonstrate a robust negative relationship between

quality and quantity-based productivity. However, when considering quality and quality-

adjusted productivity (ATFP) which takes into account both the costs and benefits of quality

as indicated by its definition in (22), a significantly positive relationship emerges. Across all

three industries, the correlation coefficient between ATFP and quality at the firm-product

level is 0.44. This positive relationship is intuitive. While the cost of quality tends to lower

ATFP as quality increases, the benefits of quality contribute to a positive association with

ATFP. The dominance of the latter force results in an overall positive relationship between

ATFP and quality. This finding aligns with previous analyses that emphasize firms with high

production capability choose to produce high-quality output endogenously (e.g., Verhoogen,

2008; Kugler and Verhoogen, 2009, 2012; Feenstra and Romalis, 2014; Hottman et al., 2016;

Fan et al., 2018). Our results not only highlight the positive sorting within firms but also

indicate that it is conditional upon acknowledging both the increasing cost and benefit of

producing higher-quality products. This observation is consistent with the findings of Li et al.

(2023), who utilize a firm-level objective quality measure from the Chinese steel industry.

In sum, our analysis on productivity and quality highlights the significance of considering

the cost of quality and the relationship between these variables at the firm-product level. A

notable implication arises from the relationship: reducing the cost of quality (e.g., through

long experience in production) not only contributes directly to an increase in the ATFP of a

firm but also indirectly stimulates growth through intra-firm resource reallocation towards

the production of higher-quality products, which subsequently enhances the firm’s ATFP

further. In the following section, we shift our focus to evaluating the cost of quality and study

the role of product scope in firm growth through intra-firm resource reallocation resulting

from a reduction in the cost of quality.

7 How Costly is Quality?

The results regarding the cost of quality are meaningful because they imply that a reduction

in the cost responsiveness of quality can lead to growth in ATFP. Intuitively, conditional

on the underlying technical efficiency (i.e., ω) and product quality, a reduction of the cost

51As a result, the estimating equation (26) becomes ω̃jnt = g1ω̃jnt−1 − γξ ξ̃jnt + g1γξ ξ̃jnt−1 + gsω̃
∗
jt−1 +

gsγξ ξ̃
∗
jt−1 + dnt + ϵjnt, where ω̃

∗
jt−1 and ξ̃∗jt−1 are the productivity and quality of the top-ranked product,

respectively. The firm-year fixed effects are not included because the top-ranked productivity and quality
vary at the firm-year level.
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responsiveness of quality (i.e., γξ) means a direct increase in quantity-based productivity

(i.e., ω̃) according to (24) and, thus, a corresponding increase in ATFP as defined in (22).

More importantly, the impact on higher-quality products is larger for a given reduction in the

cost responsiveness of quality. Thus, in the short run, multi-product firms can endogenously

reallocate resources towards high-quality and high-productivity products, which consequently

improves ATFP at the firm level.52

We focus on the short-term effects of reducing the cost responsiveness of quality while

keeping quality choices fixed.53 We emphasize the role of product scope in driving productivity

gains through resource reallocation within firms.

To explore this, we conduct a counterfactual exercise by reducing the cost responsiveness

of quality and comparing the resulting ATFP at the firm level with the baseline scenario (i.e.,

without a reduction in the cost of quality). The improvement in ATFP is then decomposed

into a direct increase due to the reduced cost of quality and the gains due to the intra-firm

reallocation of resources.

Specifically, in the counterfactual scenario, we reduce the cost responsiveness of quality (γξ)

by 1 percent for all firm-product pairs. This leads to a direct improvement in quantity-based

productivity: ω̃′
jnt = ω̃jnt + 0.01× γξ ξ̃jnt, where ω̃

′
jnt is the counterfactual productivity and

ω̃jnt and ξ̃jnt are the baseline quantity-based productivity and quality, respectively. Here γξ

denotes the estimated cost responsiveness of quality specific to each industry and reported in

Column (3) of Table 5. The direct improvement in quantity-based productivity, 0.01× γξ ξ̃jnt,

drives an increase in ATFP at the firm-product level according to (22).54

More interestingly, there is an indirect improvement in firm-level ATFP due to intra-firm

resource reallocation across products for multi-product firms. To see this mechanism, note

that the 1-percent decline in γξ leads to a differential improvement in the counterfactual

productivity across products within firms, depending on the baseline quality level (ξ̃jnt). For

a product with higher quality, the resulting productivity improvement due to the reduction

in the cost responsiveness of quality is larger. As a result, firms can react to the differential

productivity improvement by re-optimizing their intra-firm allocation of inputs and outputs.

Because ATFP and quality are positively related as documented in Section 6, multi-product

52In addition, considering that product quality is endogenously chosen by firms based on productivity as
emphasized in the literature (e.g., Verhoogen, 2008; Kugler and Verhoogen, 2009, 2012; Feenstra and Romalis,
2014; Fan et al., 2018), a cost of quality reduction implies an incentive for quality upgrading, thus increasing
ATFP even further in the long run.Our static empirical model does not capture the long-term endogenous
reaction of quality choices.

53As a result, our evaluation of the cost of quality should be seen as a lower bound of the actual impact on
firm performance.

54Throughout the analysis, we treat all the dynamic decisions (i.e., product quality, scope, and investment)
described in Online Appendix B as fixed.
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firms tend to reallocate more production resources to products with higher ATFP and higher

quality. Consequently, this reallocation leads to an indirect improvement in firm-level ATFP.

Both the direct and indirect improvements contribute to the increase in firm-level ATFP.

To understand their magnitude and relative importance, we aggregate firm-level ATFP from

firm-product-level ATFP using sales as weights. We apply the within-industry across-firm

decomposition proposed by Olley and Pakes (1996) to compute the intra-firm decomposition.

That is, for each firm j in period t,

ATFPjt = ATFPjt +
∑
n∈Λjt

(sjnt − sjt)(ATFPjnt − ATFPjt), (27)

where ATFPjt is the simple average of the exponent of quality-adjusted productivity, ATFPjnt,

across products produced by the same firm. sjnt is the within-firm sales share of product n

by firm j in period t. sjt is the simple average of the sales shares (that is, the inverse of the

product scope). Intuitively, an increase in firm-level ATFP can be caused by an increase in

ATFP of all products as well as a reallocation of resources towards more productive products.

Accordingly, intra-firm resource reallocation is defined as the difference of the covariance

term (the second term on the right-hand side) in (27) between the counterfactual scenario

and the baseline scenario. To obtain the overall improvement in ATFP at the industrial

level, we aggregate firm-level ATFP improvement using firms’ total sales as weights. The

relative contribution of intra-firm resource reallocation to the firm-level ATFP improvement

is aggregated to the industry level in the same way.

Table 6: Impact of 1-percent reduction in cost responsiveness of quality on ATFP

All firms MPFs
Industry All Footwear Printing Pharmaceutical All

Total improvement, percent 2.836 1.191 3.512 2.896 2.918
(0.097) (0.375) (0.833) (0.109) (0.103)

Intra-firm reallocation,
percent 0.854 0.120 0.569 0.966 0.997

(0.251) (0.043) (0.177) (0.286) (0.286)
percentage relative to total 30.1 10.0 16.2 33.4 34.2

(4.0) (2.2) (3.8) (5.1) (4.6)

Note: The improvement in ATFP at the industry level is measured in percentage and cal-
culated as the weighted average of the improvements in ATFP at the firm-year level with
firms’ total sales in the baseline scenario as weights. MPFs refers to multi-product firms only.
Bootstrapped standard errors clustered at the firm level and stratified by industry and scope
are shown in parentheses (100 repetitions).
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Table 6 reports the overall improvement in firm-level ATFP as well as the contribution

from the intra-firm resource reallocation of multi-product firms in the three industries. A

1-percent decline in the cost responsiveness of quality leads to an improvement in ATFP

by approximately 1.2, 3.5, and 2.9 percent for the footwear, printing, and pharmaceutical

industries, respectively. This is a sizable magnitude. More importantly, the contribution of

the within-firm resource reallocation accounts for roughly 10 percent to 33 percent of the

overall improvement in ATFP across the three industries. This is essentially a lower bound of

the contribution because the calculation is based on all firms including the single-product firms

that experience, by definition, zero within-firm reallocation. When focusing on multi-product

firms only, the contribution is on average approximately 34 percent across the three industries.

This result establishes the economic significance of the cost of quality within multi-product

firms as a channel impacting overall quality-adjusted productivity.

Figure 2: Contribution of within-firm resource reallocation to ATFP growth
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Notes: All firms producing more than 10 products are clustered in the “10+” group.

A large literature on resource reallocation focuses on across-firm analysis and shows that

much of the aggregate productivity growth is attributable to the resource reallocation towards

more productive firms (e.g., Baily et al., 1992; Bartelsman and Doms, 2000; Baily et al., 2001;

Aw et al., 2001; Foster et al., 2006, 2008; Syverson, 2011; Collard-Wexler and De Loecker,

2015). Complementary to the literature, our firm-product-level analysis shows that the

contribution of within-firm resource reallocation is also sizable. Interestingly, compared

to the footwear industry, the relatively higher intra-firm contribution in the printing and

pharmaceutical industries is consistent with the relatively larger number of products in these

industries. Indeed, as shown in Table 2, firms in the printing and pharmaceutical industries

produce 3.7 and 6.9 products on average, respectively, while firms in the footwear industry
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produce 1.3 products. Intuitively, a larger product scope allows for a greater potential to

reallocate resources across products.

To unpack such a heterogeneous pattern, we group firms by the number of products

produced and compute the sales-weighted average contribution of intra-firm resource re-

allocation to firm-level ATFP improvement (due to the reduction in the cost of quality).

This computation is conducted for each industry. We plot the relationship between product

scope and the contribution of intra-firm reallocation (in percentage) in Figure 2.55 Each

dot represents the average contribution of within-firm reallocation by product scope and

industry. The dashed line represents the fitted line obtained from a simple OLS regression of

within-firm reallocation against product scope. The upward-sloping fitted line establishes

that, on average, the role of within-firm reallocation increases in firms with a larger scope with

more room for within-firm adjustment. The slope of the fitted line suggests that producing

one more product can increase the contribution of within-firm reallocation in improving

ATFP by 7 percent. In sum, our results highlight that multi-product firms with larger scope

experience larger productivity gains when the cost of quality is lower. This reveals a new

mechanism for enhancing the performance of multi-product firms.

8 Conclusion

Multi-product firms account for a significant share of our economy. Yet, the traditional

firm-level analysis in the literature masks the intra-firm heterogeneity. In this paper, we

propose a novel method to estimate firm-product-level productivity and quality along with

demand and transformation function parameters. Compared with the existing methods in the

literature, our method does not impose assumptions on how inputs are allocated across the

production of different products within firms, nor does it restrict how productivity evolves

over time. This flexibility allows researchers to explore complex productivity dynamics after

estimation. Importantly, the method can be easily scaled up to estimate production functions

with a large number of products, without relying on the availability of productivity proxies.

Finally, the method accounts for heterogeneous intermediate input prices that are usually

unobservable to researchers and lead to biased estimation results when ignored.

We apply our method to three major industries in the Mexican manufacturing sector. We

find that both quality (demand) and productivity play significant roles in explaining intra-

firm revenue heterogeneity. However, firms face a trade-off between upgrading quality and

productivity. After taking both the costs and benefits of quality into account, quality-adjusted

productivity shows a strong positive intra-firm correlation with quality.

To understand how costly quality is for productivity growth and intra-firm resource

55The relationship is similar when the figure is plotted by industry.
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allocation, we conduct a counterfactual exercise where we reduce the cost responsiveness of

quality by 1 percent. The reduction leads to substantial productivity gains, especially for

multi-product firms. A sizable portion of the productivity gain of multi-product firms is due to

the within-firm reallocation of resources towards more-productive and higher-quality products.

In particular, we show that a larger product scope allows more room for intra-firm resource

reallocation, leading to a higher productivity gain when there is a reduction in the cost of

quality. This result establishes the quantitative significance of intra-firm resource reallocation

in enhancing the performance of multi-product firms that dominate manufacturing production.

This channel, thus, has strong potential implications for aggregate productivity growth.
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Online Appendix

A Extension to More General Demand and Transfor-

mation Functions

In the main text of the paper, we have assumed specific forms for the demand and production

transformation functions. In this appendix, we demonstrate how to extend the estimation

method to accommodate general demand and production transformation functions, whose

parameters can be identified and estimated using appropriate data. Specifically, we gen-

eralize the method in two directions. On the demand side, we generalize the demand for

a product to account for influences from the sales of other products within the same firm

(i.e., cannibalization) as well as from products of competing firms (i.e., competition). On

the production side, we extend the linear aggregator of output to a nonlinear form, allowing

for flexible substitution or complementarity across products produced by the same firm. In

addition, the model is readily extendable to allow for flexible transformation functions whose

parameters vary by product permutation, as described in Section 2.2.

A.1 Demand and Transformation Functions

We start from describing the demand function. The demand for product n of firm j in period

t is modelled as a general inverse demand function:

Pjnt = Pjnt(Qjt,Q−jt; ξt), (A.1)

where Pjnt is the product price. Importantly, Qjt = {Qjnt}, n ∈ Λjt is a vector of quantities

of the products produced by firm j in period t; Q−jt = {Qkt}, k ̸= j is a vector of quantities

of the products produced by the competitors of firm j in period t; ξt is a vector of quality

levels of products produced by firm j and its competitors.

As an identification condition, we assume that the demand system admits a unique solution

for the quality levels given observable price and quality outcomes. That is,

ξjnt = P−1
jnt(Pt,Qt), (A.2)

where Pt and Qt are the vectors of prices and qualities of all products and firms, respectively.

This assumption is satisfied by a wide set of demand functions, such as CES and Logit. In

particular, in a CES demand system, this equation degenerates to (13).

To ease the exposure of the model, we denote the price elasticity of demand of any product
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n of firm j with respective to another product k as:

∂Qjnt

∂Pjtk

Pjtk

Qjnt

= −ηjtnk. (A.3)

Note that we have slightly abused the notation (in order to simplify it) because product k

can be either a product of the same firm j (i.e., cannibalization) or a product of any other

firm j′ ≠ j (i.e., competition). That is, the elasticity defined in (A.3) is fully flexible and

varies by firm, product and time. In the paper, where a standard constant-elasticity demand

function is assumed, ηjtnk = ηn if n = k and ηjtnk = 0 if n ̸= k.

Now we turn to the production side. As in the paper, we use a transformation function

to model the production technology. Specifically, given the set of products to be produced

(Λjt) and associated product appeal (ξ̃jnt, n ∈ Λjt), the firm uses labor (Ljt), material (Mjt),

and capital (Kjt) to produce output quantity (Qjnt, n ∈ Λjt) following a constant elasticity

of substitution (CES) transformation function as the input aggregator. However, instead of

assuming a linear output aggregator as in the paper, we use a CES aggregator as in Cairncross

et al. (2023), who derive the transformation function from individual product production

functions and show that the output aggregator should be in a CES format if there are shared

inputs across products within the firm.

Formally, the transformation production function is modelled as:

G(Qjt) = F (Ljt,Mjt, Kjt), (A.4)

where Qjt is the vector of output quantities, and the output aggregator is

G(Qjt) ≡

∑
n∈Λjt

e−ω̃jntQθ
jnt

 1
θ

, θ ≤ 1, (A.5)

and the input aggregator is56

F (Ljt,Mjt, Kjt) ≡
[
αLL

γ
jt + αMM

γ
jt + αKK

γ
jt

] ρ
γ , (A.6)

While the interpretation of the variables and parameters remain the same as in Section 2.2,

this setup introduces a new parameter θ to the production model. If θ = 1, then the model

56Generalizing the CES input aggregator to more flexible functional forms, such as translog, is possible
but more challening because there are more production parameters to be identified and estimated. If one
is willing to sacrifice the advantage of not relying on productivity evolution, a specific approach of such an
extension for single-product firms is provided by Grieco et al. (2016).
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degenerates to our model in the main body of the paper.

A.2 The Unique One-to-One Mapping from Observables to Unob-

servables

As in the paper, the estimating equation is derived from the first-order conditions of firm

profit maximization. Specifically, the firm’s objective is to maximize its total profits from all

products in period t after observing its state, by optimally choosing the quantity of material

(Mjt), the quantity of labor (Ljt), and the quantities of all the products to be produced

(Qjt = {Qjnt}, n ∈ Λjt):

π(sjt) = max
Qjt,Mjt,Ljt

∑
n∈Λjt

PjntQjnt − PMjtMjt − PLjtLjt

subject to: (A.1) and (A.4). (A.7)

The Lagrange function implied by the profit maximization problem is:

Ljt =
∑
n∈Λjt

Pjnt(Qjt,Q−jt; ξt)Qjnt − PLjtLjt − PMjtMjt

−λjt

{
G(Qjt)− F (Ljt,Mjt, Kjt)

}
. (A.8)

The first-order conditions with respect to labor and material inputs are, respectively:

∂Ljt

∂Ljt

= −PLjt + λjt
∂F (Ljt,Mjt, Kjt)

∂Ljt

= 0, (A.9)

∂Ljt

∂Mjt

= −PMjt + λjt
∂F (Ljt,Mjt, Kjt)

∂Mjt

= 0. (A.10)

While the above two first-order conditions regarding inputs are the same as in the main text,

the first-order condition with respect to each product quantity Qjnt, n ∈ Λjt, is generalized:

∂L

∂Qjnt

=
∑
k∈Λjt

∂Pjtk(Qjt,Q−jt; ξt)

∂Qjnt

Qjtk + Pjnt − λjt
∂G(Qjt)

∂Qjnt

= 0, (A.11)

where
∂G(Qjt)

∂Qjnt
= e−ω̃jntQθ−1

jnt

[∑
n∈Λjt

e−ω̃jntQθ
jnt

] 1
θ
−1

. Intuitively, λjt
∂G(Qjt)

∂Qjnt
is the marginal

cost of Qjnt, which we denote it as mc(Qjnt).

Because the first-order conditions, (A.9) and (A.10), are the same as in the paper, the

solution for Mjt and λjt (which are implied by the two first-order conditions) are unchanged
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too:

Mjt =

[
αLEMjt

αMELjt

] 1
γ

Ljt. (A.12)

and

λjt =
ELjt

ραLL
γ
jt

[
αLL

γ
jt

(
1 +

EMjt

ELjt

)
+ αKK

γ
jt

]1− ρ
γ

. (A.13)

Substituting (A.13) into (A.11) gives the solution for productivity:

eω̃jnt =
Qθ−1

jnt G(Qjt)
1−θ∑

k∈Λjt

∂Pjtk(Qjt,Q−jt;ξt)

∂Qjnt
Qjtk + Pjnt

ELjt

ραLL
γ
jt

[
αLL

γ
jt

(
1 +

EMjt

ELjt

)
+ αKK

γ
jt

]1− ρ
γ

︸ ︷︷ ︸
λjt

,

(A.14)

where ξt is given by (A.2). This equation is the analog of (17). If the demand function is

CES and θ = 1, then this equation degenerates to (17) exactly. If θ ̸= 1, (A.14) suggests

that the productivity measure absorbs a product scale effect ( Qθ−1
jnt ) and firm scale effect

(G(Qjt)
1−θ).

Critically, as in the paper, we have derived a unique one-to-one mapping from observable

variables (Qjt,Pjt, Ljt, PLjt, EMjt, Kjt) to unobservable variables (ξjt,Mjt, λjt,ωjt) specified

by (A.2), (A.12), (A.13), and (A.14). Thus, these variables can be computed directly once

the demand and production parameters are estimated.

A.3 Estimating Demand and Production Parameters

Estimating a flexible demand system like (A.1) is challenging due to unobservable demand

factors (e.g., quality) and the endogeneity of prices. Most existing approaches (e.g. Berry,

1994; Berry et al., 1995) rely on a set of valid instrumental variables. Since our focus

is on the production transformation function, we assume the existence of a valid set of

instrumental variables, allowing us to estimate the demand system (A.1). Consequently, the

firm-product-time-specific quality can be recovered via (A.2).

Thus, our primary focus is on estimating the production parameters, conditional on the

demand system (A.1) being estimated and quality being recovered. This approach, which

involves first estimating the demand system and then the production functions, is adopted in

the literature (e.g. Orr, 2022).
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A.3.1 Estimating the main production parameters

To derive our main estimating equation, we start by multiplying both sides of the equation

implied by (A.11) by Qjnt. Rearranging this equation gives:

∑
k∈Λjt

∂Pjtk(Qjt,Q−jt; ξt)

∂Qjnt

Qjnt

Pjtk

PjtkQjtk + PjntQjnt = λjtG(Qjt)
e−ω̃jntQθ

jnt[∑
n∈Λjt

e−ω̃jntQθ
jnt

] . (A.15)

Use the definition Rjnt = PjntQjnte
ujt , where ujt is a mean-zero i.i.d. shock (i.e., measure-

ment error or unexpected shock), and (A.3), the above equation can be written as:

Rjnt −
∑
k∈Λjt

1

ηjtnk
Rjtk = λjtG(Qjt)

e−ω̃jntQθ
jnt[∑

n∈Λjt
e−ω̃jntQθ

jnt

]eujt . (A.16)

Sum the above equation over n ∈ Λjt to obtain:

∑
n∈Λjt

(
1−

∑
k∈Λjt

1

ηjtnk

Rjtk

Rjnt

)
Rjnt = λjtG(Qjt)e

ujt

= λjtF (Ljt,Mjt, Kjt)e
ujt

= λjt
[
αLL

γ
jt + αMM

γ
jt + αKK

γ
jt

] ρ
γ eujt

=
ELjt

ραLL
γ
jt

[
αLL

γ
jt(1 +

EMjt

ELjt

) + αKK
γ
jt

]
eujt

=
1

ρ

[
EMjt

+ ELjt

(
1 +

αK

αL

(
Kjt

Ljt

)γ)]
eujt . (A.17)

The second equality comes from the transformation function and the second last equality is a

result of substituting λjt and Mjt by (A.12) and (A.13), respectively.

Take logarithm of the above equation to obtain:

ln

∑
n∈Λjt

(
1−

∑
k∈Λjt

1

ηjtnk

Rjtk

Rjnt

)
Rjnt

 = − ln ρ+ ln

[
EMjt

+ ELjt

(
1 +

αK

αL

(
Kjt

Ljt

)γ)]
+ ujt.

(A.18)

Note that

(
1 −

∑
k∈Λjt

1
ηjtnk

Rjtk

Rjnt

)
is the reciprocal of markup of product n of firm j in
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period t. To see this, the firm-product-time specific markup is defined as:

µjnt ≡ Pjnt

mc(Qjnt)

=
Pjnt∑

k∈Λjt

∂Pjtk(Qjt,Q−jt;ξt)

∂Qjnt
Qjtk + Pjnt

=
1∑

k∈Λjt

∂Pjtk(Qjt,Q−jt;ξt)

∂Qjnt

Qjtk

Pjnt
+ 1

=
1∑

k∈Λjt

∂Pjtk(Qjt,Q−jt;ξt)

∂Qjnt

Qjnt

Pjtk

PjtkQjtk

PjntQjnt
+ 1

=
1

1−
∑

k∈Λjt

1
ηjtnk

Rjtk

Rjnt

, (A.19)

where the second equality comes from the definition of marginal cost, as defined below (A.11),

and the last equality comes from the definition of revenue and demand elasticity, as defined

in (A.3).

Therefore, (A.18) describes the relationship between revenues (adjusted by reciprocal of

markups) and inputs for a general system system, conditional on that the firm maximizes

profit. It is clear that this equation is analog of (18) in the paper. In particular, in the setup

of a CES demand function,

(
1−

∑
k∈Λjt

1
ηjtnk

Rjtk

Rjnt

)
= ηn−1

ηn
, and thus (A.18) degenerates to

(18). Note that θ does not appear in this equation. As a result, even if the outputs are indeed

complementary in production (i.e., θ < 1), (A.18) is not mis-specified for a model assuming

θ = 1 and thus the rest of production parameters are still correctly identified and estimated.

Of course, such robustness comes with a challenge – we need an extra equation to identify

and estimate θ, which will be provided in Section A.3.2.

Given that the demand system (A.1) is estimated, the left-hand side of (A.18) can be

computed. Denote the computed value as

Υ̂jt =

∑
n∈Λjt

(
1−

∑
k∈Λjt

1

η̂jtnk

Rjtk

Rjnt

)
Rjnt

 .
Intuitively, Υ̂jt is the firm-level revenue adjusted by the reciprocals of markups.

The only unobserved shock in (A.18) is the unexpected i.i.d. shock ujt. As a result, (A.18)

51



can be estimated using a Nonlinear Least Square estimator:57

β̂ = argminβ

1

N
∑
jt

{
ln Υ̂jt + ln ρ− ln

[
EMjt

+ ELjt

(
1 +

αK

αL

(
Kjt

Ljt

)γ)]}2

subject to: αL + αM + αK = 1 and
αM

αL

=
EM

EL

where β = (ρ, αL, αM , αK , γ).

A.3.2 Estimating the remaining production parameter

While (A.18) provides a simple way of estimating the main production parameters, the

parameter that governs the elasticity of substitution of the output aggregator, θ, is left

unidentified. To estimate θ, we adopt a similar strategy as employed in Section (3.2) of the

paper – utilizing the relationship across products with a firm.

Specifically, (A.16) implied by the first-order condition with respective to a product can

be expressed as:(
1−

∑
k∈Λjt

1

ηjtnk

Rjtk

Rjnt

)
Rjnt = λjtG(Qjt)

e−ω̃jntQθ
jnt[∑

n∈Λjt
e−ω̃jntQθ

jnt

]eujt , ∀n ∈ Λjt. (A.20)

From the the estimated demand system (A.1), compute and define

Υ̂jnt =

(1− ∑
k∈Λjt

1

η̂jtnk

Rjtk

Rjnt

)
Rjnt

 .
Intuitively, Υ̂jnt is the firm-product-level revenue adjusted by the reciprocal of product

markup.

Without loss of generality, we assume that product 1 is the reference product (that is, the

one produced by most firms in the industry). Take the ratio of (A.20) of any other products

to the main product. The logarithm of the ratio is:

ln

(
Υ̂jnt

Υ̂jt1

)
= θ ln

(
Qjnt

Qjt1

)
+ vjnt, (A.21)

where vjnt = ω̃jt1− ω̃jnt is the relative difference between the productivity of the two products.

57If one is concerned with the error term contained in revenues, which are used in computing the elasticities
in Υ̂jt, a GMM approach can be implemented to estimate (A.18) using the same set of instrumental variables
as proposed in estimating (21) as described in Section 3.2.
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Like (19), (A.21) states the relationship between the main product and any other product

produced by the same firm. In the setup of a CES demand and θ = 1 as in the paper, it is

straightforward to show (by substituting Qjnt by a function of Rjnt using the CES demand

function) that (A.21) degenerates to (19).

We estimate θ from (A.21) treating vjnt as an error term via a 2-Stage Least Square

estimator, using a set of instrumental variables. While firm-product-level instrumental

variables would be preferred (if available), firm-level variables such as capital stock (Kjt)

and wage rate (PLjt) are sufficient – an advantage due to the use of relative differences in

revenues and quantities of the two products. A similar argument has been applied to the

estimation of (19). Specifically, while the levels of these variables are uncorrelated with the

differences in productivity (i.e., vjnt) between two products, they influence the ratio of the

quantities of the two products. For example, conditional on everything else, a higher level of

capital stock leads to high quantities of both products, but the product (e.g., the reference

product) with less elastic demand expands more than the other, leading to a lower ratio

quantity (Qjnt/Qjt1).
58

A.3.3 Advantages and challenges of estimating the general model

The general model is attractive due to its flexibility. Unlike our CES demand model specified

in the paper, the general model incorporates a comprehensive demand system, allowing us to

study the cannibalization effects across different products produced by the same firm and to

account for markups that vary flexibly at the firm-product-time level. Moreover, once this

general demand system is estimated, it simplifies the estimation of the production parameters.

In particular, unlike the GMM approach implemented in the paper to estimate the demand

elasticity and production parameters, the estimation of the main equation (A.18) can be

accomplished using NLLS. Additionally, the general model features a more flexible output

aggregator structure, with an additional parameter governing the rate of substitution among

different outputs in the transformation function.

Nonetheless, estimating such a general model can be challenging. First, the complexities of

estimating a richer structure of the demand system (A.1) are well recognized. One particular

challenge arises from the availability of suitable instrumental variables for endogenous product

prices. Traditionally used instrumental variables, such as cost shifters, may fail as valid

instruments when products are vertically differentiated and firms choose higher-quality, more

costly inputs to improve the quality of products. In general, it requires carefully constructed

instrumental variables that are orthogonal to quality differences. For example, Berry et al.

58In our Monte Carlo experiment, the correlation between capital stock and (Qjnt/Qjt1) (both in logarithm)
is -0.2 to -0.1, depending on the demand elasticity differences. In the data, the correlation is about -0.06.
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(1995) utilize the characteristics of other automobiles produced by the firm itself and similar

automobiles produced by its rivals. In the context of estimating the production function

of multi-product firms, Orr (2022) designs sophisticated instrumental variables to leverage

the variation in product sets and material input price growth experienced by firms in other

output markets that use similar inputs in order to estimate a flexible demand function. These

strong, valid variables are not always available, like in our case.

Second, the estimation of the CES output aggregator, θ, relies on the availability of

suitable instrumental variables that are correlated with the quantity ratio (Qjnt/Qjt1). In

the approach in Section A.3.2, we propose the use of firm-level variables, such as capital

stock and wage rate, as instrumental variables when firm-product-level instruments are not

available. However, the relevance of such firm-level instrumental variables depends on the

characteristics of demand across products. For example, if the demand elasticities are the

same across products, then capital stock will not shift the quantity ratio and thus will not

serve as a valid instrumental variable for estimating (A.21) for θ.

The model implemented in the paper is a simplified version of the general model. There,

the demand system is a standard, commonly used CES demand function, and the parameter

governing the substitution of outputs in the output aggregator is assumed to be one. These

restrictions provide the advantage of estimating the demand and production parameters

jointly without relying on the availability of suitable instrumental variables required for

estimating the general model.

Despite its simplicity, this model retains several key advantages of the general model.

On the demand side, although it abstracts away from cannibalization effects within a firm,

it does allow for correlation of demand of products produced by the same firm. On the

production side, although it assumes a linear output aggregator, the potential complementary

effects governed by θ is absorbed by the flexible productivity (A.14), and consequently,

production parameters estimated from (A.18) are not biased. In terms of estimating strategy,

it eliminates the need for imputing firm-product input shares or imposing productivity

evolution processes, while maintaining flexibility in the relationship between productivity and

quality. Additionally, it is scalable to accommodate numerous products and can address bias

caused by unobserved heterogeneous intermediate input prices. Nonetheless, our methodology

can be readily implemented to the general model if suitable instrumental variables for

estimating the demand system (A.1) and (A.21) are available.
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B Dynamic Decisions

This section describes the dynamic decisions made by the firm as a completion of the full

model. At the end of each period t, the firm chooses the set of products to produce, their

associated quality levels, and investment in technical efficiency improvement (e.g., research

and development), for the next period (t+ 1). These decisions are made conditional on the

current state sjt = (Λjt,ωjt, ξjt, Kjt, PMjt, PLjt,χjt) and after observing the adjustment costs

of product scope and quality levels. Although the evolution of Kjt, PMjt, PLjt and χjt can

be endogenous, we remain agnostic on modelling their exact evolution processes because our

estimation method focuses on the static decisions and does not rely on how these variables

evolve over time. The adjustment costs of product scope capture the costs incurred by the

firm to install and arrange new production lines. The adjustment costs of product quality

contain the costs of modifying the production procedure and sourcing new suppliers of the

material input to meet the new quality levels.

In making decisions regarding product scope, quality levels, and investment, the firm is

forward-looking and takes into account the impact of the current decisions on the future paths

of the state variables. In particular, the firm knows that the choice of improving the quality

of a product for the next period will reduce the associated (quantity-based) productivity in

the next period (i.e., due to the cost of quality). As a result, these decisions are dynamic.

Although we do not estimate the complex dynamic model in this paper (due to the

considerably high dimension of the state variables),59 the model serves the crucial purpose of

clarifying the (dynamic) choices made by the firm and their implications when we estimate

the static model. In particular, the dynamic model implies that even if the underlying

technical efficiency follows a simple AR(1) process, the resulting productivity (i.e., TFPQ)

is not an AR(1) process as assumed in the literature. To see this, note that quality ξjt+1n

is endogenously determined by the firm based on the state variable vector sjt, including

the technical efficiency of all products (i.e., ωjt). Considering the impact of quality on

productivity shown in (6), the productivity of any product n in period t+ 1 depends on the

entire state vector sjt in a highly nonlinear way. Ignoring such interdependent relationships

may potentially result in biased estimation. Fortunately, our empirical method does not use

any assumptions regarding how technical efficiency and productivity evolve, as discussed in

Section 3.

59For example, even in the footwear industry with only four products, the dynamic state includes at least
10 continuous variables – 4 variables for technical efficiency, 4 variables for product quality, and 2 for the
material and labor prices.
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C Additional Tables and Figures

Table A1: Product list, manufacturing of footwear, mainly of leather (class 324001)

Industry Product description Code

324001 Cow leather, for men 1
324001 Cow leather, for women 2
324001 Cow leather, for kids 3
324001 Others 99

Table A2: Product list, printing and binding (class 342003)

Industry Product description Code

342003 Printing of Calendars and almanacs 5
342003 Folding boxes 6
342003 Labels and prints 13
342003 Brochures and catalogs 14
342003 Continuous forms 15
342003 Accounting, administrative and tax forms 16
342003 Telephone directories 17
342003 Books 18
342003 Journals 19
342003 Checks 21
342003 Commemorative and business cards 23
342003 Commercial flyers 24
342003 Posters 25
342003 Others 99
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Table A3: Product list, manufacturing of pharmaceutical products (class 352100)

Industry Product description Code

352100 Medicinal products, for human use with a specific action, anti-infectious: Bactericides 11
352100 Antiparasitics 13
352100 Dermatological 15
352100 Other products with specific action not included in other categories 19
352100 Medicinal products for human use for specialties with action on: Circulatory system 21
352100 Digestive system and metabolism 22
352100 Human musculoskeletal system 23
352100 Respiratory system 24
352100 Sensory organs 25
352100 Genitourinary organs, except hormones 26
352100 Blood and hematopoietic organs 27
352100 Central nervous system 28
352100 Hormones 32
352100 Vitamins and Vitamin Compounds 43
352100 Non-therapeutic products 59
352100 Others 99

Table A4: Within-firm product shares by product scope

Product rank (by sales level)
Product scope 1 2 3 4 5+

1 1.000
2 0.783 0.217
3 0.675 0.238 0.087
4 0.560 0.283 0.117 0.040
5+ 0.443 0.204 0.124 0.083 0.146

Note: All firm-year pairs producing 5 products or more are clustered in the “5+” group. All
products ranked 5 or lower are clustered in the “5+” group.
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Table A5: Descriptive statistics

Variable Footwear Printing Pharmaceutical

Revenue per product (R) 64.846 29.142 100.167
(101.261) (73.091) (207.205)

Number of workers (L) 236.180 157.704 450.222
(361.356) (153.598) (482.926)

Labor expenditure (EL) 13.785 17.435 88.792
(28.726) (22.124) (110.791)

Material expenditure (EM) 50.446 65.568 263.033
(77.265) (90.175) (382.666)

Capital stock (K) 3.603 21.491 22.534
(8.444) (47.314) (31.437)

Notes: The table reports the means and standard deviations (in parenthesis) for each

variable by industry. R is revenues by product (1 million 2007 Mexican Peso, 1M MXN);

L is the number of workers by firm, K is the capital stock by firm (1000 physical units);

EL is the expenditure on labor (wage bill) by firm (1M MXN); EM is the expenditure on

intermediates by firm (1M MXN).

Figure A1: Weighted average within-firm HHI, by number of products
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Notes: All firm-year pairs producing 10 products or more are clustered in the “10+” group.

The weighted average is calculated using revenues as weights.

58



Figure A2: Distribution of quality-adjusted productivity, ATFP
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Notes: ATFP is demeaned, and only products with at least 100 observations are included.

Figure A3: Distribution of productivity, ω̃
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Notes: ω̃ is demeaned, and only products with at least 100 observations are included.
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Figure A4: Distribution of quality, ξ̃
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Notes: ξ̃ is demeaned, and only products with at least 100 observations are included.
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D Monte Carlo Exercises

In this appendix, we present the results of Monte Carlo exercises to demonstrate the perfor-

mance of our estimation method.

In this Monte Carlo setting, the choice of product sets is exogenous and random. Wage

rate, material prices, and capital stock are serially correlated.60 The levels of productivity

and quality of any given product are not only serially correlated over time but also negative

correlated with each other. With this setting, the Monte Carlo exercises consist of N

replications of simulated data sets of J firms in T years, given a set of true parameters of

interest for 5 products, namely, (η1, η2, η3, η4, η5, αL, αM , αK , σ, ρ).

Specifically, in each replication, we simulate productivity (ω̃jnt) and quality (ξ̃jnt) for each

product n, firm j, and time t. We also simulate the wage rate (PLjt
), the material price

(PMjt
) and the capital stock (Kjt) for each firm j and time t. All of these variables are

serially correlated. In addition, we simulate the negative relationship between productivity

and quality as documented in the paper by allowing for a negative correlation r between

the shocks in their evolution processes. Specifically, the evolution process of each of these

variables for each firm follows an AR(1) process:

ω̃jnt = gn0ω + gnωω̃jnt−1 + εωjnt, ∀n,

ξ̃jnt = gn0ξ + gnξ ξ̃jnt−1 + εξjnt, ∀n,

ln(PLjt) = g0ℓ + gℓ ln(PLjt−1) + εℓjt,

ln(PMjt) = g0m + gm ln(PMjt−1) + εmjt ,

ln(Kjt) = g0k + gk ln(Kjt−1) + εkjt,

where ε is the innovation shock realized in period t, which is assumed to be a normally

distributed error term with zero mean and standard deviation sd(ε). While the shocks in

the processes of PLjt, PMjt, and Kjt are i.i.d., those of ω̃jnt and ξ̃jnt are correlated with

a coefficient of r. Although the evolution of the capital stock is exogenous in this setup,

the Monte Carlo result is similar if investment (and hence the capital stock) depends on

productivity and quality levels.

Given these variables, we use the firm’s static profit maximization problem to derive a

sequence of optimal choices of labor and material inputs (Ljt and Mjt), the optimal output

quantity (Qjnt) and price (Pjnt) for firm j and product n in each period t.

60The Monte Carlo result is similar if the evolution of capital stock depends on an investment rule which is
a function of capital stock and the levels of productivity and quality.
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In this way, we generate a data set of variables for the Monte Carlo experiments. Among

them, we use the following variables for the estimation procedure (including the sets of IVs)

described in Section 3: {Qjt1, . . . , Qjt5, Rjt1, . . . , Rjt5, Kjt, Ljt, ELjt
, EMjt

}. The values of the

parameters used for the data generation process are reported in Table A6. The mean estimates

of the key parameters, together with their corresponding standard errors, are reported in

Table A7. Overall, the result shows that our estimation recovers the true parameters of the

production and demand functions well.

Table A6: Monte Carlo Parameter Values

Parameter Description Value

η1, η2, η3, η4, η5 Demand elasticities 7, 6, 5, 4, 3
σ Elasticity of substitution 2
αL Distribution parameter of labor 0.2
αM Distribution parameter of material 0.6
αK Distribution parameter of capital 0.2

g1ω, g
2
ω, g

3
ω,g

4
ω, g

5
ω Persistence parameters in productivity evolution 0.75, 0.7, 0.65, 0.6, 0.55

g1ξ , g
2
ξ , g

3
ξ ,g

4
ξ , g

5
ξ Persistence parameter in quality evolution 0.75, 0.7, 0.65, 0.6, 0.55

gl Persistence parameter in wage rate evolution 0.8
gm Persistence parameter in material price evolution 0.8
gk Persistence parameter in capital evolution 0.8
r Correlation between productivity and quality shocks -0.2

sd(εω) Standard deviation of productivity shock 0.02
sd(εξ) Standard deviation of quality shock 0.02
sd(εℓ) Standard deviation of wage rate shock 0.1
sd(εm) Standard deviation of material price shock 0.1
sd(εk) Standard deviation of capital stock shock 0.1
sd(u) Standard deviation of revenue measurement error (u) 0.01
T Number of periods 15
J Number of firms 400
N Number of Monte Carlo replications 300
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Table A7: Monte Carlo Estimates of Production and Demand Function Parameters

Parameter True Estimate

η1−1
η2−1

1.200 1.199

(0.021)
η1−1
η3−1

1.500 1.499

(0.027)
η1−1
η4−1

2.000 1.999

(0.037)
η1−1
η5−1

3.000 3.002

(0.053)

αL 0.200 0.200
(0.002)

αM 0.600 0.600
(0.001)

αK 0.200 0.200
(0.002)

σ 2.000 2.000
(0.010)

ρ 1.100 1.101
(0.009)

η1 7.000 7.000
(0.350)

η2 6.000 6.003
(0.254)

η3 5.000 5.001
(0.204)

η4 4.000 4.002
(0.157)

η5 3.000 2.998
(0.102)

Note: The parameter estimates are re-
ported as the mean estimates from the
Monte Carlo simulations. Standard er-
rors in parentheses are computed as the
standard deviation of the estimates.
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