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Abstract

Economic decisions take place at the margin. When treatment is binary, instru-

mental variables recover causal effects for “compliers” whose treatment decisions are

marginal to the instrument (Imbens and Angrist, 1994). When treatment is a non-

binary dosage, instruments must shift the same agents’ treatment (e.g., price) more

than once to show evidence of nonlinear responses (e.g., quantity demanded). If there

are no “multi-marginal units,” then any nonlinearity can be rationalized by the data,

including linear structural effects. However, the existence of multi-marginal units is

not sufficient to show that structural effects are nonlinear, even if structural effects are

assumed to be monotone (e.g., demand slopes downward).

This paper provides (1) tests for the non-existence of multi-marginal units; (2) tests

for monotone structural effects; (3) bounds for distributions of potential outcomes un-

der monotonicity; and (4) tests for convex structural effects under monotonicity. Each

contribution highlights the importance of instrument relevance in detecting structural

nonlinearities, at odds with the practice of using narrow comparisons to support the

exclusion restriction.

∗Nicholas Li: nicholas.li@gwu.edu. Benjamin Williams: bdwilliams@gwu.edu. We thank Perry Sharaf, Mark Behringer,
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1 Introduction

[S]eparation of the observer from the phenomenon to be observed is no longer

possible.

– Werner Heisenberg

I don’t understand why economists are so obsessed with linear models.

– Anonymous Physicist

When direct inference of the causal effect of a treatment X on an outcome Y is infea-

sible, unethical, or unpersuasive, analysts often use an instrumental variable Z to change

the dosage of X, holding other determinants ε constant. They often operationalize inference

with instruments by specifying structural relationships between Y and X that are linear-

in-parameters. On the one hand, the workhorse linear model is transparent—the epony-

mous two-stage least squares (2SLS) estimator is a ratio of two reduced-form slopes—and

convenient—the parameter-of-interest directly measures the marginal effect of treatment.

Despite its misspecification-robust interpretation as a weighted average derivative, the esti-

mates give no indication of whether, for example, increasing prices yields the same demand

effect regardless of the baseline price. In other scenarios, conclusions hinge specifically on

structural nonlinearities (Bhattacharya, 2024).

Thus, analysts try to capture nonlinear responses in two ways: moment condition estima-

tors (including 2SLS) (e.g., Newey and Powell, 2003; Horowitz, 2011) and control function

estimators (Imbens and Newey, 2009). While they accommodate more flexibility in modeling

average responses, both approaches place restrictions on effect heterogeneity, an increasingly

prominent explanation for economic phenomena and important component of economic mod-

eling. The former approach assumes no effect heterogeneity (Hahn and Ridder, 2011), and

the latter imposes rank restrictions that do not permit Roy selection on gains (Kasy, 2011),

for example. Empiricists are left with little guidance for documenting reduced-form evidence

supporting or rejecting the presence of nonlinear effects under more minimal assumptions.

This paper argues that quantifying nonlinear effects without restrictions on heterogeneity

is inherently fraught. Because unrestricted selection into higher dosages can rationalize many

patterns in data, ruling out linear (or convex or concave or other nonlinear) effects requires

highly predictive instruments that explain much of the overall variation in the data. However,

(1) such instruments are at odds with the practice of making narrow comparisons to support

the exclusion restriction assumption, and (2) if instruments explain much of the variation in
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treatment, then treatment cannot be “too endogenous,” undermining the need for exogenous

instruments. The paper argues this in two parts.

The first part generalizes “compliers” to more general treatment settings. Naturally, rel-

evant instruments must shift agents’ treatment: agents must be marginal to the instrument.

In turn, to provide evidence that causal effects change with higher dosages, instruments

must shift the same agents’ treatment to multiple values. We call agents that are marginal

at multiple values of the instrument “multi-marginal.” However, if an agent is marginal

at one value of the instrument, they may be inframarginal at other values. Therefore, in-

strument relevance is not sufficient to guarantee that any multi-marginal agents exist. We

provide a test for the non-existence of multi-marginal agents. If there are no multi-marginal

agents, then any nonlinearity, including linear effects, can be rationalized by the reduced-

form relationships and heterogeneous selection into dosage.

The second part of the paper analyzes what instrumental variable analysis can say about

structural effects’ direction and convexity. Specifically, we provide tests for whether (1) struc-

tural effects are stochastically increasing (decreasing) and (2) whether they are stochastically

increasing (decreasing) and convex (concave). In contrast to the test for stochastic direc-

tion, one may fail to reject both stochastic convexity and concavity. In other words, either

interpretation is consistent with the data.

The starting point of our analysis is a non-separable, triangular model of potential out-

comes that satisfies minimal exclusion and monotonicity assumptions, mirroring Imbens and

Angrist (1994) and Angrist and Imbens (1995). We first analyze selection into dosage for

general treatments. We partition the population into principle strata of inframarginal and

(single- and multi-)marginal agents (Frangakis and Rubin, 2002). Unlike the case of bi-

nary treatment, the size of the marginal population (i.e., the analogous “complier” share) is

not point identified. However, inframarginal agents’ potential outcomes of X and Y do not

change (Kitagawa, 2015), allowing us to place sharp bounds on agents who are inframarginal

between different instrument values. Using this, we provide a test for a null hypothesis that

there are no multi-marginal agents over all values of the instrument. In many empirical set-

tings where instruments may be highly significant but explain little of the overall variation

(i.e., large first-stage F -stat but low first-stage partial R2), analysts may not be able to reject

the null of no multi-marginals.

In other settings, analysts may have powerful instruments that reject the non-existence of

multi-marginals. However, agents whose behavior is only shifted twice gives no information

about higher-order nonlinearities. We can show that unless the instrument is perfectly

predictive, there is always a point where higher-order nonlinearities are not identified.

Nevertheless, even if treatment is exogenous, many empiricists are not interested in higher
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order nonlinearities. Analysts approximate the conditional expectation function with OLS

regression models and use quadratic terms to test for structural convexity. Since estimating

such a model with instruments and 2SLS restricts effect heterogeneity, we ask what can be

learned about structural convexity from instruments.

In the second part of the analysis, we study how instruments can test for stochastic di-

rection and convexity of potential outcomes. Stochastic order (and convexity) are desirable

properties because they are equivalent to qualitative conclusions being robust to increasing

(and convex) transformations of the outcome variable. This part has three key elements.

First, we provide necessary and sufficient conditions for stochastic order. If potential out-

comes are stochastically ordered, then they can be rationalized by a model where effects are

monotonic (e.g., demand slopes downward for everyone). Second, we derive sharp bounds on

the marginal distributions of potential outcomes under monotonic effects.1 Third, we provide

necessary and sufficient conditions for potential outcomes to be stochastically increasing (de-

creasing) and convex (or concave). If the bounds in the marginal distributions of potential

outcomes distributions are wide, then analysts will likely fail to reject both convexity and

concavity. Finally, each of the three elements involve finding maximal lower sets, an open

question in probability and qualitative multidimensional welfare analyses. We show that in

two dimensions, this is equivalent to a very simple variational calculus problem, which is

straightforward to compute.

Altogether, both sets of results imply that credibly identifying any nonlinearities re-

quires much more than “relevant” instruments from a sampling error “strong first-stage”

standpoint. Typically in structural analyses, there is little focus on the “first-stage” rela-

tionship: i.e., the first-stage relationship is generally not part of the “structural model.”

Instead, analysts focus on arguing that the instruments are exogenous and independent of

the structural unobservables in the “second-stage” that they wish to hold constant. How-

ever, “sensitivity to the first-stage implies that the identified relation is not structural...

(Haavelmo, 1944) calls this invariance property ‘autonomy.’ ” (Hahn and Ridder, 2011) We

show that structural relationships of interest are inherently sensitive to the first-stage rela-

tionship between the endogenous variable the instrument. Absent structural justifications

for the first-stage specification, the data can be consistent with the opposite conclusions.

Thus, for a fixed instrument set, the results raise questions of whether complicated struc-

tural models incorporating flexibility for potentially nonlinear responses (via e.g., moment

conditions or sieve estimators) in fact yield more accurate counterfactual predictions than

linear structural models that are both simpler and more transparent.

1If one does not assume that effects are monotonic, the marginal distributions are generally unbounded,
to say nothing of the joint distributions.
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This paper contributes to several distinct literatures studying causal inference and struc-

tural identification when treatment is non-binary. The first studies discrete treatments. In

the case of binary instruments, Angrist and Imbens (1995) showed that with an ordered,

multi-valued treatment, 2SLS identifies the average causal response (ACR), a weighted av-

erage of the causal effect of a one unit increase in treatment. A wide literature has emerged

that addresses the limited interpretability of the ACR, but these generally come at the ex-

pense of stronger assumptions. Vohra and Goldin (2024) derive informative sharp bounds

on a cumulative complier effect by restricting effect heterogeneity across different complier

groups. Nibbering and Oosterveen (2024) derive a similar result with unordered treatment.

Rose and Shem-Tov (2024) show that recoding treatment as a binary indicator produces

an interpretable weighted average of treatment effects by excluding types of compliers in

the population (see also Andresen and Huber, 2021). Chernozhukov et al., 2024 also derive

results on identification with a binary instrument under copula restrictions. Multi-valued

instruments generally give an opportunity to learn more about the structural functions,

but existing approaches still restrict heterogeneity. In the case of multi-valued instruments,

Heckman, Urzua, and Vytlacil (2006), Heckman and Vytlacil (2007), and Heckman, Urzua,

and Vytlacil (2008) showed that identification of more interpretable economic parameters is

possible by relating treatment and the instrument using a discrete choice model. Heckman

and Pinto, 2018 and Lee and Salanié, 2018; Lee and Salanié, 2024 study identification under

more general monotonicity conditions that do not require treatment values to be ordered.

Rather than showing that assumptions are sufficient for identification of target parameters,

Goff (2024) and Navjeevan, Pinto, and Santos (2023) take the opposite approach and study

necessary conditions for point identification of target parameters. We show that under unre-

stricted heterogeneity and ordered instruments, the complier share between treatment values

is generally not point identified.

The second studies continuous treatments. Many of the above approaches do not apply,

but similarly, identification generally relies on restricting heterogeneity. The control function

approach of Imbens and Newey (2009) restricts the dimension of heterogeneity in the selection

equation. The nonparametric IV approach of Newey and Powell (2003) restricts the dimen-

sion of heterogeneity in the potential outcomes. Finally, Torgovitsky (2015), D’Haultfœuille

and Février (2015), and Chernozhukov et al. (2024) derive results that combine restrictions

on outcome heterogeneity with restrictions on selection to derive identification with discrete

instruments.

Encompassing these literatures, we consider both continuous and discrete treatments. In

contrast to these literatures, we focus on identification of nonlinear effects across ordered
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treatment values. We maintain the monotonicity condition of Angrist and Imbens (1995),2,

and we do not restrict the dimension of heterogeneity in either the potential outcomes or

treatments. One of the reasons LATE is influential is because of what it implies about the

reduced form. The reduced-form of credible research designs provide evidence of structural

effects’ direction without strong assumptions. In contrast, our analysis suggests that because

credible reduced-forms can be consistent with the opposite nonlinear conclusion, that absent

very powerful instruments, conclusions of nonlinear effects may hinge solely on restrictions

on heterogeneity.

This paper also links two literatures. The paper extends Manski’s (1997) analysis of

what can be learned under sign restrictions to two dimensions, utilizing tools from the broad

literature on stochastic order, spanning economics (Atkinson and Bourguignon, 1982) and

probability (Shaked, 2007). In an instrumental variable setting where the instrument is ex-

cludable and the structural relationships are monotonic, the bivariate marginal distributions

of potential outcomes are stochastically ordered. We use this to derive bounds on potential

outcomes distributions and provide tests for structural concavity and convexity.

Relatedly, testing stochastic order for random vectors involves showing that for any lower

set the probability of one being in the set is greater than or equal to the probability of

the other being in the set. Practically, searching over all lower sets is computationally

burdensome, so existing tests focus on searching over a subset of them (Crawford, 2005;

Stengos and Thompson, 2012; McCaig and Yatchew, 2007). Moreover, the tests are infeasible

when one wants to test whether uncountable random vectors are stochastically ordered (as

is our case with continuous instruments). We show that finding the maximal lower set is a

variational calculus problem and provide necessary and sufficient conditions for the maximal

lower set.

This paper is organized as follows. Section 2 lays out the basic assumptions and notation.

Section 3 analyzes marginals and multi-marginals. Section 4 provides bounds for potential

outcomes under monotone effects and analyzes structural convexity and concavity. Proofs

for Section 3 are in the Appendix, and proofs for Section 4 are in progress.

2 Setup and Notation

2.1 Standard Fare

We consider a situation where an analyst observes the joint distribution of (Y,X,Z), the

outcome, the potentially endogenous treatment, and the instrument. Formally, we follow

2This assumption is not nested by the unordered monotonicity condition of (Heckman and Pinto, 2018)
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Imbens (2007) and assume exclusion and monotonicity mirroring assumptions used in Imbens

and Angrist (1994):

Assumption 1 (Triangular System and Exclusion Restriction).

1. Triangular System: We assume that random variables Y and X are unknown func-

tions of Z, η, ε,

Y = g (X; ε)

X = h (Z; η)

where X, Y, Z are observed with real-valued realizations, ε and η are latent, potentially

infinite dimensional nuissance parameters capturing unobservables to hold constant,

and g and h are structural functions of interest.

2. Exclusion Restriction: We assume that our instrument is independent of the un-

observables,

Z ⊥ (ε, η)

Assumption 2 (Weak Monotonicity in the Instrument). h(z; η) is weakly increasing in z

for all η.

All our results apply for the case where h(z; η) is decreasing in z by considering −Z as

the instrument. Note that our Assumption 2 is weaker than Kasy (2014) and equivalent to

Imbens and Angrist’s: not every increase in z necessarily corresponds to an increase in X.

To focus on notions of marginality, we depart from usual notation and index potential

outcomes with z.

Definition 1 (Potential Outcomes).

Xz = h (z; η)

Y z = g (Xz; ε)

= g (h (z; η) ; ε)

We consider structural counterfactual predictions using those potential outcomes, omit-

ting the notation for unobserved dimensions of heterogeneity. Namely, potential outcomes

have a superscript, and observed outcomes do not. This notation instead puts stronger focus

on the direct “intention-to-treat” causal effects of Z. When considering nonlinear effects of

X, we will use g directly rather than the abbreviated potential outcomes notation.
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The data generating process selectively reveals agents’ structural potential outcomes as

observed outcomes. In other words, random variables Y and X are functions of observed Z

and unobserved ε and η. The goal of instrumental variables is generally to hold constant

those unobservables to indirectly understand the causal effect of X on Y .

2.2 Notation

Throughout, we denote cumulative distribution functions (CDFs) with F and their densities

by f , and we use subscripts to denote the corresponding random variable. We denote the

quantile function or generalized inverse of the CDF of random variable W as F−1
W (u) =

infw {w : FW (w) ≥ u}. Where possible, we will write functions of observed random variables

on the left hand side of equations and functions of potential outcomes on the right hand side

of equations.

3 Selection: Inframarginals, Marginals, and Multi-marginals

3.1 Inframarginals and their potential outcomes

Let Z denote the support of the instrument Z. Here we define the units that are inframarginal

and marginal units on any arbitrary subset Z0 ⊆ Z.

Definition 2 (Inframarginal units). A unit is inframarginal on Z0 if Xz is a constant

function of z over Z0. Let NZ0 be an indicator for whether a unit is inframarginal on Z0.

There are two immediate implications of the exclusion restriction. First, if a unit is

inframarginal on Z0, its intention-to-treat effect is also zero on the interval. Second, the

conditional distribution of (Y,X) | Z = z,NZ0 = 1 is fixed for z ∈ Z0.

Lemma 1 (Y z constant for inframarginals). If NZ0 = 1, then Y z is a constant function of

z over Z0.

Lemma 2 (Fixed distribution of observed outcomes for inframarginals). The distribution

function of realized outcomes for inframarginals is fixed. For any z, z′ ∈ Z0, FY,X|Z,NZ0
(y, x | z′, 1) =

FY z ,Xz |NZ0
(y, x | z, 1).

Many of the subsequent results come from noting that the observed distributions are

mixtures of marginals and inframarginals and applying Lemma 2.
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3.2 Marginals and binary instruments

The objective of this section is to derive bounds on the share of inframarginals and their

marginal counterparts in the simplest possible scenario where Z takes two values, Z = {0, 1}.
We later extend the results to Z with arbitrary support, including the common case where

Z is continuously distributed.

Definition 3 (Marginal units). A unit is marginal on Z0 if it is not inframarginal on Z0.

Let MZ0 := 1−NZ0 be an indicator for whether a unit is marginal on Z0.

Because units are either inframarginal or marginal, observed distributions are mixtures

of distributions for inframarginals and marginals. Throughout, we assume that the distri-

bution functions of potential outcomes Xz, Y z are absolutely continuous with respect to the

Lebesgue measure.

Assumption 3. The conditional CDF of potential outcomes FXz ,Y z(x, y) is absolutely con-

tinuous with respect to the Lebesgue measure with corresponding density fXz ,Y z(x, y).

It follows that the conditional distribution functions of observed outcomes FX,Y |Z(x, y | z)
are also absolutely continuous.

3.2.1 Sharp Bounds on Inframarginal Share

The Upper Bound The upper bound on inframarginals (and correspondingly, the lower

bound on marginals) comes from attributing as much of the data as possible to inframarginals

whose potential outcomes do not change. Denote this overlapping density overlapZ0
(x, y) :=

minz∈Z0

{
fX,Y |Z (x, y | z)

}
.

Lemma 3 (Upper Bound on Inframarginal Share). Let z0 ∈ Z0 and let the inframarginal

share E[NZ0 ] = pZ0. Then,

pZ0 ≤ p̄Z0 :=

∫
R2

overlapZ0
(x, y) dxdy.

Proof. By Lemma 2, fXz ,Y z |NZ0
(x, y | 1) = fXz0 ,Y z0 |NZ0

(x, y | 1) ∀z ∈ Z0, and every condi-

tional distribution is a mixture of marginals and inframarginals, fX,Y |Z (x, y | z) = pZ0fXz0 ,Y z0 |NZ0
(x, y | 1)+

(1− pZ0) fXz ,Y z |NZ0
(x, y | 0), ∀z ∈ Z0. Because both terms are non-negative, overlapZ0

(x, y) ≥
pfXz0 ,Y z0 |NZ0

(x, y | 1). The inequality follows by integrating both sides.

Lemma 4 (Sharpness of Bounds with Binary Support). If the support of Z is binary, p̄Z is

a sharp upper bound.
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The proof involves subtracting the overlapping density from each of the observed densities

and assuming constant ranks among marginal agents. The lower bound on marginals is

immediate.

Corollary (Sharp Lower Bound on Marginal Share). The marginal share E[MZ ] = 1 − p

has a sharp lower bound of 1− p̄Z .

We make three additional remarks. First, we assume that the random variables are

absolutely continuous with respect to the Lebesgue measure because most empirical data

admit densities, especially those where one would be interested in estimating structural

nonlinearities. However, the inequalities hold for arbitrary probability measures, so one can

construct a similar proof by instead defining the overlap function as the greatest lower bound

of the two probability measures conditional on Z and defining the bound as the Lebesgue

integral over the state space. Second, it is no surprise that data generated by a binary

instrument can be rationalized by linear structural functions: each set of potential outcomes

can be connected by a line. However, the key idea here is that one need only draw lines

between mass “missing” at Z = 0 to “excess” mass at Z = 1. We apply this same idea when

considering multi-valued Z. Third, the upper bound in Lemma 3 does not use monotonicity.

Monotonicity is equivalent to first order stochastic dominance of X | Z = 0 by X | Z = 1,

which are observable (or X0 by X1, which are not), and provides no other restrictions to

refine the upper bounds. Monotonicity plays a role in the lower bound for inframarginals.

The Lower Bound Consider an irrelevant instrument such that X ⊥ Z. All agents must

be inframarginal to the instrument. By opposite token, if the distribution of X | Z = 1

is simply a horizontal shift of the distribution of X | Z = 0, then all agents are marginal

to the instrument under a rank equivalence condition. The lower bound on inframarginals

comes from measuring the overlap in the distribution functions, and the proof is a nearly

immediate consequence of Example 2 in Arnold, Molchanov, and Ziegel (2020).

Lemma 5 (Lower Bound on Inframarginal Share). The share of units that are inframarginal

on Z0, E[NZ0 ] = pZ0, is bounded from below by

pZ0 ≥ pZ0
:=

∫
R
D(x)dFX

=

∫ 1

0

D̃(p)dp

where D(x) := 1
[{
x : FX|Z (x | z) = FX (x)∀z ∈ Z0

}]
is an indicator for x where the condi-

tional distribution functions overlap so 1[X ≤ x] ⊥ Z. Alternatively, one can write the bound
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in terms of D̃ (p) := 1
[{
p : F−1

X|Z (p | z) = F−1
X (p) ∀z ∈ Z0

}]
, an indicator for where the

quantile functions overlap, i.e. if U = FX(X), the p such that 1[U ≤ p] ⊥ Z and z0 ∈ Z0.

Proof. Fix z0 ∈ Z0. By Arnold, Molchanov, and Ziegel (2020) Example 2, if FXz (x) =

FXz0 (x), then Pr[Xz = Xz0 | Xz0 = x] = 1. Extending this argument, if FXz(x) is some

constant for some x and ∀z ∈ Z0, then FXz (x) = FXz0 (x). Correspondingly, Pr[Xz =

x ∀z | Xz0 = x] = 1 and FX|Z (x | z) = FX (x) ∀z ∈ Z0. The inequality comes from

integrating over the support of X with respect to the corresponding measure.

Lemma 6 (Sharpness of Lower Bound with Binary Support). If the support of Z is binary,

pZ is a sharp lower bound.

The bound is achieved by assuming units have constant ranks.

Corollary (Sharp Upper Bound on Marginal Share). The marginal share E[MZ ] = 1− pZ

has a sharp upper bound of 1− pZ .

Interestingly, these bounds use monotonicity but not exclusion. We summarize the

bounds from Lemmas 4 and 6 in Theorem 1.

Theorem 1 (Sharp bounds on share of inframarginals and marginals).

1. The inframarginal share E[NZ ] = pZ is sharply bounded by pZ ≤ pZ ≤ p̄Z .

2. The marginal share E[MZ ] = 1− pZ is sharply bounded by 1− p̄Z ≤ 1− pZ ≤ 1− pZ

Special Case: Binary Treatment If treatment is binary so the support of X is {0, 1},
then the bounds coincide and the marginal share is point identified, corresponding to the

familiar expression for the complier share.

Example 1 (Share of inframarginals (never and always takers) and marginal compliers with

binary treatment).

pZ = p̄Z = pZ = E[X | Z = 1]− E[X | Z = 0]

Proof. Modifying the proof of Lemma 3 slightly to accommodate discrete X,, note:

min
{
fXY |Z (y | 0) , fXY |Z (y | 1)

}
= fXY |Z (y | 0)

min
{
f(1−X)Y |Z (y | 0) , f(1−X)Y |Z (y | 1)

}
= f(1−X)Y |Z (y | 1) ,
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corresponding to the densities of Y 1 and Y 0 for the always takers and the never takers,

respectively (see e.g., Abadie, 2003; Kitagawa, 2015). Integrating over the support of Y , the

upper bound on the inframarginal share is p̄Z = E[X | Z = 0] + E[1−X | Z = 1].

For the other bound, we can compute the expression directly, noting that F−1
X|Z (p | z) =

1 [p ≥ E [X | Z = z]], so pZ = E [X | Z = 0] + 1− E [X | Z = 1].

3.3 Multi-marginals and multi-valued instruments

When the instrument is binary, at most two potential outcomes are revealed to the analyst,

so the data can be rationalized by heterogeneous (but linear) effects. To rule out linear

effects, analysts must observe more than two potential outcomes. Instruments with larger

support allow analysts to observe more than two potential outcomes.

However, just as binary instruments do not guarantee that agents see more than one

potential outcome, larger support does not guarantee two (much less three) uncensored

potential outcomes. In this section, we define agents that are marginal to multiple values

of the instrument. If there are no such units, then the data can be rationalized by linear

structural relationships. Paralleling Definition 3, we first define multi-marginals.

Definition 4 (Multi-marginal units). A unit is multi-marginal on an interval Z0 =

[z0, z1] ⊆ Z if there is some z∗ ∈ Z0 such that the unit is marginal on the interval [z0, z
∗]

and the unit is marginal on interval [z∗, z1]. Let Mmulti
Z0

be an indicator for whether a unit

is multi-marginal on Z0.

The definition has two immediate implications. First, if a unit is multi-marginal then

X(z) > X(z′) > X(z′′) for some z > z′ > z′′. Second, multi-marginal units on Z0 are also

marginal on Z0.

3.3.1 Three-valued instruments

We can derive explicit bounds on the share of multi-marginal units in the simplest possible

scenario accommodating multi-marginal units, where Z0 = Z = {0, 1, 2}. The lower bound

on multi-marginals comes from attributing as much of the data as possible to units that are

inframarginal on Z1 = {0, 1} or Z2 = {1, 2}.

Lemma 7 (Sharp Lower Bound on Multimarginal Share). If Z = {0, 1, 2} then the multi-

marginal share E[Mmulti
Z ] = pmultiZ has a sharp lower bound given by

pmultiZ ≥
∫

max
(
fX,Y |Z(x, y | 1)− overlapZ1

(x, y)− overlapZ2
(x, y) , 0

)
dxdy
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where Z1 = {0, 1} and Z2 = {1, 2}.

The upper bound comes from assuming rank invariance. Under rank invariance, everyone

is multi-marginal except those where FX|Z(x|0) = FX|Z(x|1) or FX|Z(x|1) = FX|Z(x|2). This
leads to the following result.

Lemma 8 (Sharp Upper Bound on Multimarginal Share). If Z = {0, 1, 2} then the multi-

marginal share E[Mmulti
Z ] = pmultiZ has a sharp upper bound given by

pmultiZ ≤ 1−
(
pZ0

+ pZ1
− pZ

)
where Z1 = {0, 1} or Z2 = {1, 2}.

3.3.2 Continuous instruments

Testing for multi-marginals when Z is continuously distributed follows similar ideas from

Sections XXYY. Between two instrument values, units are inframarginal if their potential

outcomes do not change. The bounds on the population come from attributing all overlap-

ping mass to inframarginals. In contrast, where mass is “missing,” units must be marginal.

If there are no multi-marginals, then all missing mass must come from the baseline density

of potential outcomes.

For this section, we assume that Y , X and Z are continuously distributed.

Assumption 4. The conditional density, fY,X|Z(y, x | z) is absolutely continuous in z for

all x, y with partial derivative ψ(y, x, z) := ∂
∂z
fY,X|Z(y, x | z), which is continuous in x, y and

z and absolutely integrable,
∫ 1

0

∫
X

∫
Y |ψ(y, x, z)|dydxdz <∞

We further assume that Z = [z0, z1], which we normalize to the unit interval, [0, 1].

To operationalize the notions of excess and missing mass, let ψ+(y, x, z) := max(ψ(y, x, z), 0)

and ψ−(y, x, z) := max(−ψ(y, x, z), 0) denote the positive and negative parts of the density

derivative. We can then state a simple condition for whether the identified set for pmultiZ

contains 0.

Theorem 2 (Test for multimarginals). The identified set for pmultiZ contains 0 if and only if∫ 1

0
ψ−(y, x, z)dz ≤ fY 0,X0(y, x) for all x, y ∈ Supp{X, Y }.

If the total amount of “missing mass” does not exceed the baseline density, then as in

Section 3, the data can be rationalized by heterogeneous step functions in the first stage and

linear structural equations with heterogeneous slopes and intercepts.
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Rationalizing nonlinearities without multimarginals Theorem 2 shows that the den-

sity condition is both necessary and sufficient for the nonexistence of multimarginals. If there

are no multimarginals, then following the sufficiency direction of the proof, any structural

nonlinearity is rationalizable.

Corollary 1. Let d (x; ε) be continuous in x on [x, x̄] where x is a lower bound for x0 (η),

and x̄ is an upper bound for x1 (η, Z
∗). If pmultiZ = 0, then d (x; ε) is in the identified set of

∂g(δ)(x;ε)
∂xδ

for any δ ≥ 2.

Since any structural nonlinearity is rationalizable, it immediately follows that any non-

linearity in the average structural function or quantile structural function among any sub-

population is also rationalizable.

Corollary 2. Let d be defined as in Corollary 1. If pmultiZ = 0, then d is in the identified set

of derivatives of order δ ≥ 2 of the conditional average structural function ∂(δ)

∂xδ
Eε [g (x, ε) |W ]

and the conditional quantile structural function ∂(δ)

∂xδ
inf {y : Eε [1 [g (x, ε) ≤ yt] |W ] ≥ τ} for

any quantile τ .

4 All I wanted to do was regress Y on X and X2:

Testing direction and convexity with instruments

4.1 Direction: Testing two-dimensional stochastic order and mono-

tonicity in structural effects

Definition 5. W z stochastically dominatesW z′ for z > z′ if Pr [W z ∈ L]−Pr
[
W z′ ∈ L

]
≤ 0

for any lower set L.

Corollary 3 (Shaked and Shantikumar Theorem 6.B.1). (Xz, Y z) is increasing in z if and

only if there exists a structural function g (x; ε) that (1) is increasing in x for all ε and (2)

rationalizes the data (i.e. Y z = g (Xz; ε)).

Let,

M (z) = max
Lz∈LS

Pr [W z ∈ Lz]− Pr
[
W z′ ∈ Lz

]
M (z) = max

Lz∈LS

∂

∂z
Pr [W z ∈ Lz]

for discrete and continuous Z, respectively, and LS is the set of all lower sets in R2

14



Lemma 9. W z stochastically dominates W z′ for z > z′ if and only if maxzM(z) ≤ 0.

Assumption 5 (Monotone effects). g is increasing in x for all ε.

4.2 Sharp bounds on potential outcomes distributions under mono-

tone structural effects

Let

• Q2(x0, y0) = {(x, y) : x ≤ x0, y > y0} and Q4(x0, y0) = {(x, y) : x > x0, y ≤ y0}

• S2
z (x, y) = Pr [W z ∈ Q2 (x, y)] and S4

z (x, y) = Pr [W z ∈ Q4 (x, y)]

Fix x and y and for ease of notation denote Q2(x, y) = Q2 and Q4(x, y) = Q4

Lemma 10. Under assumption 5,

1. If g(x; ε) ≤ y, then W z /∈ Q2 for all z.

2. If W z ∈ Q4 for any z, then g(x; ε) ≤ y

Corollary 4. The CDF of potential outcomes are bounded above and below by

1. Pr [g (x; ε) ≤ y] ≤ Pr [∩z∈ZW z /∈ Q2]

2. Pr [g (x; ε) ≤ y] ≥ Pr [∪z∈ZW z ∈ Q4]

4.2.1 Binary instruments

Lemma 11. The CDF of potential outcomes are sharply bounded above by

Pr [g (x; ε) ≤ y] ≤ Pr
[
W 0 /∈ Q2 ∩W 1 /∈ Q2

]
= 1− Pr

[
W 0 ∈ Q2

]
− Pr

[
W 1 ∈ Q2

]
+ Pr

[
W 0,W 1 ∈ Q2

]
and sharply bounded below by

Pr [g (x; ε) ≤ y] ≥ Pr
[
W 0 ∈ Q4 ∪W 1 ∈ Q4

]
= Pr

[
W 0 ∈ Q4

]
+ Pr

[
W 1 ∈ Q4

]
− Pr

[
W 0,W 1 ∈ Q4

]
Lemma 12. Pr [W 0,W 1 ∈ Q2] is sharply bounded above by

Pr
[
W 0,W 1 ∈ Q2

]
≤ Pr

[
W 1 ∈ Q2

]
− max

L∈LS

{
Pr

[
W 1 ∈ Q2 ∩ L

]
− Pr

[
W 0 ∈ Q2 ∩ L

]}
15



and Pr [W 0,W 1 ∈ Q4] is sharply bounded above by

Pr
[
W 0,W 1 ∈ Q4

]
≤ Pr

[
W 1 ∈ Q4

]
− max

L∈LS

{
Pr

[
W 1 ∈ Q4 ∩ L

]
− Pr

[
W 0 ∈ Q4 ∩ L

]}
Theorem 3. The CDF of potential outcomes are sharply bounded above by

Pr [g (x; ε) ≤ y] ≤ 1− Pr
[
W 0 ∈ Q2

]
− max

L∈LS

{
Pr

[
W 1 ∈ L ∩Q2

]
− Pr

[
W 0 ∈ L ∩Q2

]}
and sharply bounded below by

Pr [g (x; ε) ≤ y] ≥ Pr
[
W 0 ∈ Q4

]
+ max

L∈LS

{
Pr

[
W 1 ∈ L ∩Q4

]
− Pr

[
W 0 ∈ L ∩Q4

]}
4.2.2 Multi-valued/continuous instruments

Discrete instruments

Theorem 4. The CDF of potential outcomes are sharply bounded above by

Pr [g (x; ε) ≤ y] ≤ 1−Pr
[
W 0 ∈ Q2

]
−

K∑
k=1

max
Lk∈LS

{
Pr

[
W k ∈ Lk ∩Q2

]
− Pr

[
W k−1 ∈ Lk ∩Q2

]}
and sharply bounded below by

Pr [g (x; ε) ≤ y] ≥ Pr
[
W 0 ∈ Q4

]
+

K∑
k=1

max
Lk∈LS

{
Pr

[
W k ∈ Lk ∩Q4

]
− Pr

[
W k−1 ∈ Lk ∩Q4

]}
Continuous instruments

Lemma 13. The CDF of potential outcomes is sharply bounded above by

Pr [g (x; ε) ≤ y] ≤1− Pr
[
W 0 ∈ Q2

]
−

∫ 1

0

maxLz∈LS
{
Pr

[
W z+dz ∈ Lz ∩Q2

]
− Pr [W z ∈ Lz ∩Q2]

}
dz

dz

and sharply bounded below by

Pr [g (x; ε) ≥ y] ≤Pr
[
W 0 ∈ Q4

]
+

∫
maxLz∈LS

{
Pr

[
W z+dz ∈ Lz ∩Q4

]
− Pr [W z ∈ Lz ∩Q4]

}
dz

dz
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Theorem 5. If regularity conditions, then the CDF of potential outcomes is sharply bounded

above by

Pr [g (x; ε) ≤ y] ≤ 1− Pr
[
W 0 ∈ Q2

]
−
∫ 1

0

dPr [W z ∈ Q2]

dz
dz

and sharply bounded below by

Pr [g (x; ε) ≤ y] ≤ Pr
[
W 0 ∈ Q4

]
−
∫ 1

0

dPr [W z ∈ Q4]

dz
dz

4.3 Finding maximal lower sets

Lemma 14. Let S (x) = {y ∈ R : (x, y) ∈ L}, T = {x ∈ R : S (x) ̸= ∅}, bL (x) = supS (x),

and L̃ =
{
(x, y) : x ∈ T, y < bL (x)

}
. Then, Pr [W ∈ L] = Pr

[
W ∈ L̃

]
= Pr

[
Y < bL (X)

]
Lemma 15.

M (z) = min
b(x;z)

∫ ∞

−∞

∫ b(x;z)

−∞

[
fzj (x, y)− fzj+1

(x, y)
]
dydx

M (z) = min
b(x;z)

∫ ∞

−∞

∫ b(x;z)

−∞

∂f (x, y; z)

∂z
dydx

for discrete and continuous Z, respectively.

4.3.1 Binary instruments

First, consider the case of binary instruments where Z = {0, 1}. We can write Pr [W 0 ∈ L]−
Pr [W 1 ∈ L] = Pr

[
Y 0 ≤ bL (X0)

]
− Pr

[
Y 1 ≤ bL (X1)

]
. Combining Lemmas 10–13,

Lemma 16. If the distribution of (Xz, Y z) is absolutely continous for all z, then g(x; ε) is

increasing in x for all ε if and only if

min
L∈LS

Pr
[
W 0 ∈ L

]
− Pr

[
W 1 ∈ L

]
= min

b(x)∈B

∫ ∞

−∞

∫ b(x)

−∞
[f0 (x, y)− f1 (x, y)] dydx ≥ 0

where B is the set of decreasing functions in R.

Let L(x) =
∫ b(x)
−∞ [f0 (x, y)− f1 (x, y)] dy. Frolov and Frolov show that this is a calculus

of variations problem solved by an “upgraded” Lagrangian

L (x, b, b′;χ, ζ) = L(x) + χ (x)
(
b′ (x) + ζ2 (x)

)
.

Thus,
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Lemma 17. b∗(x) is a local minimizer of
∫∞
−∞ L(x, b, b′;χ, ζ)dx if and only if

1. b∗(x) is non-increasing,

0 ≥ db∗(x)

dx

2. When b∗(x) is decreasing, the bivariate densities are equal,

0 =
db∗(x)

dx
[f0 (x, b

∗ (x))− f1 (x, b
∗ (x))]2

3. The bivariate densities are increasing in y at the optimum,

∂f1
∂y

(x, b∗ (x)) >
∂f0
∂y

(x, b∗ (x))

Lemma 18. b∗ is a global minimizer of
∫∞
−∞ L(x, b, b′;χ, ζ)dx if it is a local minimizer and

∂f1
∂y

(x, y) > ∂f0
∂y

(x, y) ∀x, y

4.3.2 Multi-valued/continuous instruments

Theorem 6. Under continuous Z, g(x; ε) is increasing in x for all ε if∫∞
−∞

∫ b∗(x;z∗)
−∞

∂f(x,y;z)
∂z

dydx ≥ 0 where b∗(x; z∗)...
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A Proofs

Lemma 4 (Sharpness of Bounds with Binary Support). If the support of Z is binary, p̄Z is

a sharp upper bound.

Proof of Lemma 4. To prove that the bound is sharp, we must show there always exists a

DGP, a g (x; ε) and an h (z; η), that (1) satisfies exclusion and monotonicity; (2) rationalizes

the data; and (3) achieves the bound. The bounds can be achieved by assuming three

dimensions of heterogeneity. Define

1. f̃ (x, y) = overlapZ(x,y)
p̄

2. f̂ (x, y | z) = fX,Y |Z(x,y|z)−overlapZ(x,y)

1−p̄

and note that these are valid density functions, representing the regions of overlapping den-

sity and the observed conditional densities less the overlapping density. For the purpose of

defining quantile functions associated with the densities, let (UX , UY ) be distributed accord-

ing to f̃ and (VXz , VY z) be distributed according to f̂ .

The DGP comes from rationalizing each of these densities with inframarginals and

marginals, respectively. All variation for the inframarginals must come from heterogene-

ity, so constant structural functions suffice. The observed distributions for marginals can be

rationalized using step and affine functions.

Let

1. NZ ∼ Bernoulli(p̄) denote whether agents are inframarginal;

2. η ∼ Uniform[0, 1] and ε ∼ Uniform[0, 1] be independent.

Finally, let

X (z; η,NZ) =

x̃ (η) NZ = 0

x̂0 (η)1 (z < 1) + x̂1 (η)1 (z ≥ 1) NZ = 1

Y (x; ε, η,NZ) =

ỹ (ε, η) NZ = 0

m (ε, η) (x− x̂0 (η)) + ŷ0 (ε, η) NZ = 1

where

1. x̃ (η) = F−1
UX

(η)

2. ỹ (ε, η) = F−1
UY |UX

(ε | x̃ (η))
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3. x̂z (η) = F−1
VXz

(η)

4. ŷz (ε, η) = F−1
VY z |VXz

(ε | x̂z (η))

5. m (ε, η) = ŷ1(ε,η)−ŷ0(ε,η)
x̂1(η)−x̂0(η) .

The distribution of (Xz, Y z) | Z = z has the same distribution as (X, Y ) | Z = z. Monotonic-

ity holds because the quantile function is weakly increasing. Exclusion holds by construction

because the potential outcomes of Y are not a function of the realization of random variable

Z.

Lemma 6 (Sharpness of Lower Bound with Binary Support). If the support of Z is binary,

pZ is a sharp lower bound.

Proof of Lemma 6. The bound is achieved by assuming rank invariance in X. Let η ∼
Uniform[0, 1] and ε ∼ Uniform[0, 1] be independent. Let

X (z; η) = x0 (η)1 (z < 1) + x1 (η)1 (z ≥ 1)

Y (x; ε, η) = m (ε, η) (x− x0 (η)) + y0 (ε, η)

where

1. xz (η) = F−1
X|Z (η | z)

2. yz (ε, η) = F−1
Y |X,Z (ε | xz (η) , z)

3. m (ε, η) = y1(ε,η)−y0(ε,η)
x1(η)−x0(η) .

Lemma 7 (Sharp Lower Bound on Multimarginal Share). If Z = {0, 1, 2} then the multi-

marginal share E[Mmulti
Z ] = pmultiZ has a sharp lower bound given by

pmultiZ ≥
∫

max
(
fX,Y |Z(x, y | 1)− overlapZ1

(x, y)− overlapZ2
(x, y) , 0

)
dxdy

where Z1 = {0, 1} and Z2 = {1, 2}.

Lemma 8 (Sharp Upper Bound on Multimarginal Share). If Z = {0, 1, 2} then the multi-

marginal share E[Mmulti
Z ] = pmultiZ has a sharp upper bound given by

pmultiZ ≤ 1−
(
pZ0

+ pZ1
− pZ

)
where Z1 = {0, 1} or Z2 = {1, 2}.
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Theorem 2 (Test for multimarginals). The identified set for pmultiZ contains 0 if and only if∫ 1

0
ψ−(y, x, z)dz ≤ fY 0,X0(y, x) for all x, y ∈ Supp{X, Y }.

Proof of Theorem 2. (⇒): We first want to show that if pmultiZ = 0, then
∫ 1

0
ψ−(y, x, z)dz ≤

fY 0,X0(y, x) for all x, y. By way of contradiction, suppose
∫
Z ψ

−(y∗, x∗, z)dz > fY0,X0(y
∗, x∗)

for some x∗, y∗.

We must first translate the inequality into probability terms. We do this by showing the

inequality (1) holds in a neighborhood of x∗, y∗; (2) holds when integrating ψ over regions

of Z where it is negative; and (3) holds when approximating the inequality using a finite

collection of intervals.

First, by Assumption 4 and compactness of Z, the inequality holds for a neighborhood

around x∗, y∗. Let ∆ (δ) = {(x, y) : |x− x∗| < δ, |y − y∗| < δ} be a square region on the

outcome surface with sides of length 2δ. Then for some δ̄ > 0,∫
∆(δ)

∫
Z
ψ−(y, x, z)dzdxdy >

∫
∆(δ)

fY 0,X0(y, x)dxdy

for any 0 < δ ≤ δ̄. Let ε0 =
∫
∆(δ)

∫
Z ψ

−(y, x, z)dzdxdy −
∫
∆(δ)

fY 0,X0(y, x)dxdy > 0.

Second, we change the integral of ψ− over Z to an integral of ψ over regions where

it is negative. Formally, let Z∗ (δ) = {z ∈ Z : sup∆(δ) ψ(y, x, z) ≤ 0} be the instrument

values where the density is not increasing in z on the entire square ∆ (δ). Because ψ is

continuous, ψ− is continuous in y and x. Thus, ∀ε > 0, ∃δ small enough so that the

density is not decreasing too much outside Z∗ (δ), i.e., ψ− (y, x, z) < ε for all z ∈ Z\Z∗ (δ).

Correspondingly,∫
∆(δ)

∫
Z
ψ−(y, x, z)dzdxdy =

∫
∆(δ)

(∫
Z∗(δ)

ψ−(y, x, z)dzdxdy +

∫
Z\Z∗(δ)

ψ−(y, x, z)dzdxdy

)
<

∫
∆(δ)

(∫
Z∗(δ)

ψ−(y, x, z)dzdxdy + ε

)
So,

−
∫
∆(δ)

∫
Z∗(δ)

ψ(y, x, z)dzdxdy =

∫
∆(δ)

∫
Z∗(δ)

ψ−(y, x, z)dzdxdy

>

∫
∆(δ)

∫
Z
ψ−(y, x, z)dzdxdy − 4δ2ε

>

∫
∆(δ)

fY 0,X0(y, x)dxdy

if ε is small enough, i.e. 4δ2ε < ε0. Let ε1 = −
∫
∆(δ)

∫
Z∗(δ)

ψ(y, x, z)dzdxdy−
∫
∆(δ)

fY 0,X0(y, x)dxdy >
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0.

Third, we apply Littlewood’s first principle and approximate Z∗ (δ) with a finite number

of open intervals, i.e. ∀ε > 0, ∃S = ∪k {(zk, zk+1)}k such that Pr [Z ∈ Z∗ (δ)∆S] < ε. Since

ψ(x, y, z) is continuous in z on Z, it is also bounded between [−M,M ]. So,

−
∫
∆(δ)

∫
Z∗(δ)

ψ(y, x, z)dzdxdy =−
∫
∆(δ)

∫
S

ψ(y, x, z)dzdxdy

−
∫
∆(δ)

∫
Z∗(δ)\S

ψ(y, x, z)dzdxdy

+

∫
∆(δ)

∫
S\Z∗(δ)

ψ(y, x, z)dzdxdy

<−
∫
∆(δ)

∫
S

ψ(y, x, z)dzdxdy + 4δ2Mε

So,

−
∫
∆(δ)

∫
S

ψ(y, x, z)dzdxdy > −
∫
∆(δ)

∫
Z∗(δ)

ψ(y, x, z)dzdxdy − 4δ2Mε

>

∫
∆(δ)

fY 0,X0(y, x)dxdy

if ε is small enough, i.e. 4δ2Mε < ε1. Integrating the density derivative over the box on the

left-hand side forms a probability measure,

∑
k

∫
∆(δ)

∫ zk+1

zk

ψ(y, x, z)dzdxdy =
∑
k

Pr [(Y,X) ∈ ∆(δ) |Z = zk]− Pr [(Y,X) ∈ ∆(δ) |Z = zk+1]

=
∑
k

Pr [(Y zk , Xzk) ∈ ∆(δ)]− Pr [(Y zk+1 , Xzk+1) ∈ ∆(δ)]

Thus, the contradiction hypothesis implies that the sum of changes in likelihood of potential

outcomes being in the square exceeds the baseline likelihood of potential outcomes being in

the square,

Pr
[(
Y 0, X0

)
∈ ∆(δ)

]
<

∑
k

Pr [(Y zk , Xzk) ∈ ∆(δ)]− Pr [(Y zk+1 , Xzk+1) ∈ ∆(δ)] .

We will show that this is inconsistent with there being almost no multimarginals.

Consider z < z′. Monotonicity implies that either (1) Xz = Xz′ or (2) Xz < Xz′ .

If Xz = Xz′ and (Xz, Y z) ∈ ∆(δ), then exclusion implies that
(
Xz′ , Y z′

)
∈ ∆(δ). The

contrapositive of this implication is that if
(
Xz′ , Y z′

)
̸∈ ∆(δ), then Xz < Xz′ .
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Thus,

Pr [(Xzk , Y zk) ∈ ∆(δ)] = Pr [(Xzk , Y zk) ∈ ∆(δ) , Xzk = Xzk+1 ] + Pr [(Xzk , Y zk) ∈ ∆(δ) , Xzk < Xzk+1 ]

≤ Pr [(Xzk+1 , Y zk+1) ∈ ∆(δ)] + Pr [(Xzk , Y zk) ∈ ∆(δ) , Xzk < Xzk+1 ]

So rearranging and substituting yields,

Pr
[(
Y 0, X0

)
∈ ∆(δ)

]
<

∑
k

Pr [(Xzk , Y zk) ∈ ∆(δ) , Xzk < Xzk+1 ]

If the events, {(Xzk , Y zk) ∈ ∆(δ) , Xzk < Xzk+1} are not disjoint then there is some k and

k′ such that 0 < Pr [Xzk < Xzk+1 , Xzk′ < Xzk′+1 ] < pmultiZ . On the other hand, if they are

disjoint then the sum of probabilities is the probability of the union of the disjoint events so

that

Pr
[(
Y 0, X0

)
∈ ∆(δ)

]
< Pr

[
(Xz, Y z) ∈ ∆(δ) , Xz < Xz′ for some z < z′

]
,

This then implies that Pr
[
(Y 0, X0) ̸∈ ∆(δ) , (Xz, Y z) ∈ ∆(δ) , Xz < Xz′ for some z < z′

]
>

0, which implies that pmultiZ = Pr
[
X0 < Xz < Xz′

]
> 0.

(⇐): Let fZ∗(z∗) =
∫
X

∫
Y ψ

−(x, y, z∗)dxdy, and define a random variable Z∗ distributed

according to fZ∗ with a point mass at 3 (a number outside the support of Z), so Pr [Z∗ = 3] =

1 −
∫
X

∫
Y ψ

−(x, y, z∗)dxdy. (Note that
∫
X

∫
Y ψ

−(x, y, z∗)dxdy =
∫
X

∫
Y ψ

+(x, y, z∗)dxdy be-

cause
∫
X

∫
Y ψ

+(x, y, z∗)dxdy−
∫
X

∫
Y ψ

−(x, y, z∗)dxdy =
∫
X

∫
Y ψ(x, y, z

∗)dxdy = ∂
∂z

∫
X

∫
Y f (x, y|z) dxdy =

0.) Next, define

φ (x, y|z) = ψ+ (y, x, z)

fZ∗ (z)

And let
(
UX , UY

)
|Z∗ = z be distributed according to φ (y, x|z). Finally, let η ∼ Uniform [0, 1]

and ε ∼ Uniform [0, 1] be independent. Our DGP is given by

X (z; η, Z∗) = x0 (η)1 [z ≤ Z∗] + x1 (η, Z
∗)1 [z > Z∗]

Y (x; η, ε, Z∗) =

y0 (ε, η) Z∗ = 3

m (ε, η, Z∗) (x− x0 (η)) + y0 (ε, η, Z
∗) Z∗ < 3

where

1. x0 (η) = F−1
X|Z (η|0)

2. x1 (η, Z
∗) = F−1

UX |Z (η|Z
∗)
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3. y0 (ε, η) = F−1
Y |X,Z (ε|x0 (η) , 0)

4. y1 (ε, η, Z
∗) = F−1

UY |UX ,Z∗ (ε|x1 (η, Z∗) , Z∗)

5. m (ε, η, Z∗) = y1(ε,η,Z∗)−y0(ε,η)
x1(η,Z∗)−x0(η) .

Note: I think that the dgp above doesn’t quite work. The following is a restatement of

the one in my proof in a similar form to the one above:

X (z; η, Z∗) = x0 (η)1 [z ≤ Z∗] + x1 (η, Z
∗)1 [z > Z∗]

Y (x; η, ε, Z∗) = m (ε, η, Z∗) (x− x0 (η)) + y0 (ε, η)

where

1. x0 (η) = F−1
X|Z (η|0)

2. y0 (ε, η) = F−1
Y |X,Z (ε|x0 (η) , 0)

3. Z∗ | x0(η), y0(ε, η) drawn from distribution with density ψ−(x0,y0,z)
fX0,Y0

(x0,y0)
for z ∈ [0, 1) and

a point mass of 1−
∫ 1
0 ψ

−(y0,x0,z)dz

fX0,Y0
(x0,y0)

at 1 (or some value above one)

4. x1 (η, Z
∗) = F−1

UX
+ |Z∗ (η̃|Z∗) where

(
UX
+ , U

Y
+

)
|Z∗ = z is distributed according to φ (y, x|z)

and η̃ = FUX
− |Z∗(x0(η) | Z∗) where

(
UX
− , U

Y
−
)
|Z∗ = z is distributed according to

φ̃ (y, x|z) := ψ−(y,x,z)
fZ∗ (z)

5. y1 (ε, η, Z
∗) = F−1

UY
+ |UX

+ ,Z∗ (ε|x1 (η, Z∗) , Z∗)

6. m (ε, η, Z∗) = y1(ε,η,Z∗)−y0(ε,η)
x1(η,Z∗)−x0(η) .

Corollary 1. Let d (x; ε) be continuous in x on [x, x̄] where x is a lower bound for x0 (η),

and x̄ is an upper bound for x1 (η, Z
∗). If pmultiZ = 0, then d (x; ε) is in the identified set of

∂g(δ)(x;ε)
∂xδ

for any δ ≥ 2.

Proof of Corollary 1. We prove the case where δ = 2; the cases for δ > 2 follow immediately.

We must show that there exists a function g such that ∂g(2)(x;ε)
∂x2

= p and g (x0 (η) , ε) =

y0 (ε, η) and g (x1 (η, Z
∗)) = y1 (ε, η, Z

∗). To simplify notation, we omit notation indexing

heterogeneity, η, ε, Z∗.

Let a ∈ [x, x̄] and define d̃ (x,C) =
∫ x
a
d (x) dx + C and ˜̃d (x) =

∫ x
a
d̃ (x) dx + D =∫ x

a

∫ x
a
d (x)+(x− a)C+D. By the Fundamental Theorem of Calculus, d̃ and ˜̃d are continuous

and ˜̃d′ = d̃ and ˜̃d′′ = d. Let ỹ0 =
∫ x0
a

∫ x0
a
d (x) dx and ỹ1 =

∫ x1
a

∫ x1
a
d (x) dx. Then let

C = (y1−y0)−(ỹ1−ỹ0)
x1−x0 and D = y0 − ỹ0 − (x0 − a)C.
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Corollary 2. Let d be defined as in Corollary 1. If pmultiZ = 0, then d is in the identified set

of derivatives of order δ ≥ 2 of the conditional average structural function ∂(δ)

∂xδ
Eε [g (x, ε) |W ]

and the conditional quantile structural function ∂(δ)

∂xδ
inf {y : Eε [1 [g (x, ε) ≤ yt] |W ] ≥ τ} for

any quantile τ .
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